ALGORITHMS FOR GENERATING NEAR-RINGS ON
FINITE CYCLIC GROUPS

Angel Golev

Abstract. In the present work are described the algorithms that generate
all near-rings on finite cyclic groups of order 16 to 29.

Keywords: near-ring, finite cyclic group
2010 Mathematics Subject Classification: 16Y30

1. Introduction

J. R. Clay started the study of near-rings whose additive groups are finite
cyclic ones in 1964 [2]. In 1968 all the near-rings on cyclic groups of order up
to 7 were computed [3]. Later all the near-rings on cyclic groups of order 8 [7],
up to 12 [12], up to 13 [9] and up to 15 [1] were computed.

In works [10, 5] calculating the number of all near-rings on \(\mathbb{Z}_n \), 16≤n≤29 is
announced. In the present work the algorithms that generate these near-rings
are described.

The annotations, used in this paper, are described in [10].

It is known [2] that there exists a bijective correspondence between the
left distributive binary operations * defined on \(\mathbb{Z}_n \) and the \(n^n \) functions \(\pi \)
mapping \(\mathbb{Z}_n \) into itself. If \(r \ast 1 = b \) defines the function \(\pi(r) = b \), then according
to [2, Theorem II], the binary operation * is left distributive exactly when, for
any \(x, y \in \mathbb{Z}_n \), the equality

\[
\pi(x) \cdot \pi(y) = \pi(x \cdot \pi(y))
\]

holds.

According to the above result, obtaining the near-rings on \(\mathbb{Z}_n \) is equivalent
to obtaining functions \(\pi \) such that equation (1) holds.

2. Data Structure

We use the following notation for the near-rings

\[
(k) \ (x_0 \ x_1 \ldots \ x_{n-1})
\]

where \(k \) is the number of the generated near-ring and \(x_i \) are the values of the
function \(\pi: x_i = \pi(i), \ i \in \mathbb{Z}_n \).

For example, “2 (0 0 0 1)” means the second near-ring on \(\mathbb{Z}_4 \) with values
of the function \(\pi: \pi(0) = \pi(1) = \pi(2) = 0, \ \pi(3) = 1. \)

In the developed programs we represent a near-ring by using the function \(\pi \).
To store values of \(\pi \) we use one-dimensional array of integers \(\pi_i \).
3. Algorithms for generating near-rings on finite cyclic groups

I check the correctness of described algorithms and programs by using a known number of near-rings on \mathbb{Z}_n, $n \leq 15$. For verification the number of near-rings on \mathbb{Z}_n, $n > 16$ the exact values for \mathbb{Z}_n where n is prime are used and the number of non-zero-symmetric near-rings described in [8].

Algorithm 1

The elements of the function π are constructed consequently, by adding elements in the array pi which meet the Equation (1). If the new element of π does not meet (1), we go to the previous level. In the calculation of (1), the right side of equality it can happen that $x \cdot \pi(y)$ is greater than the number of the elements found so far. In this case, it is assumed that the new element fulfills Equation (1).

Function: $\text{EQUATION1}(x, y, q)$
Input: x, y – indexes of the elements of π, q – index of the last found element;
Operation: checks the Equation (1) for x and y;
Output: 1 – Equation (1) is satisfied; 0 – not.

```plaintext
function EQUATION1(x, y, q)  
t ← (x \cdot pi[y]) \mod n  
if $t \leq q$ and $((pi[x] \cdot pi[y]) \mod n) \neq pi[t]$ then  
    return 0  
else  
    return 1  
end if  
end function
```

Function: $\text{CheckConditions}(q)$
Input: q – the index of new element of π;
Operation: checks the Equation (1) for each previous element of π and q;
Output: 1 – Equation (1) is satisfied; 0 – not.

```plaintext
function CheckConditions(q)  
if $\text{EQUATION1}(q, q, q) = 0$ then return 0  
end if  
for $p ← 0, q−1$ do  
    if $\text{EQUATION1}(p, q, q) = 0$ then  
        return 0  
    end if  
end for  
if $\text{EQUATION1}(q, p, q) = 0$ then  
    return 0  
end if  
return 1  
end function
```
Because not all elements satisfy the Equation (1), the obtained function \(\pi \) must be checked again that all pairs of elements meet (1).

Here are used some programming techniques to improve the performance of the program. For example, to calculate \(a \cdot b = a*b \mod n \) a two-dimensional array \(\text{mod}_n \) with pre-calculated elements of all products of numbers from 0 to \(n \) is used: \(a \cdot b \equiv \text{mod}_n[a,b] \).

This algorithm is much better than generating all possible functions \(\pi \) and verifying Equation (1). It is used to generate and find the number of all near-rings on \(\mathbb{Z}_n, n \leq 23 \). We also use this algorithm to verify the output of the next algorithms.

The accumulated empiric data from generation of these near-rings is used to make some hypotheses about the lower bounds of near-rings. Some properties are found, and are used to obtain the number of all near-rings on finite cyclic groups for larger \(n \).

Algorithm 2

By definition, for Equation (1) to be fulfilled, the values of the function \(\pi \) must be a multiplicative subgroup of \((\mathbb{Z}_n, \cdot)\).

At the end of the function \text{CheckConditions}, if the right side of (1) is greater than \(q \), we check whether this new value forms a multiplicative subgroup with previous values of \(\pi \).

\[
\text{INC(quantity[pi[q]])}
\]

\[
\text{for } qn \leftarrow 0, q-1 \text{ do }
\]

\[
\text{if quantity[qn] > 0 and quantity[(pi[qn] * pi[q]) \mod n] = 0 then}
\]

\[
\text{return 0}
\]

\[
\text{end if}
\]

\[
\text{end for}
\]

Here we use an array \text{quantity}, which contains the number of different values of the function \(\pi \).

This algorithm does not improve significantly the performance of the program, but the idea can be further developed as follows: The functions \(\pi \) can be generated only from elements of a previously found multiplicative subgroup.

Algorithm 3

In this algorithm we do a complete verification of Equation (1) for the new elements of the function \(\pi \). In some cases this may result in inconsistent addition of new elements to the array \(pi \).

These “inconsistent” elements can not be saved directly into the array \(pi \). Therefore two new array \(pi_2 \) and \(pi_n \) are used. In the first we save the value of the “inconsistent” element, equal to \(x \cdot \pi(y) \), and in the second array we save the number of occurrences of that value at this position, because the value can
be produced on adding different elements. An array of pointers $\text{pi} _\text{ptr}$ to lists of “inconsistent” elements is used. This helps us to remove these elements more easily.

Procedure: \texttt{INSERTNODE}(q, p, value)

Input: q – the index of new element, p – the value of $x \cdot \pi(y)$, value – the value of the left side of (1);

Operation: adds a new element to the list for position q.

\begin{verbatim}
procedure \texttt{INSERTNODE}(q, p, value)
 $\text{pi} _2[p] \leftarrow \text{value}$
 $\text{INC}(\text{pi} _n[p])$
 $\text{node} _\text{ptr} \leftarrow \text{NEWNODE}(p)$
 $\text{pi} _\text{ptr}[q].\text{LISTADD}($node_ptr$)$
end procedure
\end{verbatim}

Procedure: \texttt{REMOVEPLIST}(q)

Input: q – index of element of π;

Operation: removes the list for position q.

\begin{verbatim}
procedure \texttt{REMOVEPLIST}(q)
 if $\text{pi} _\text{ptr}[q] = \text{null}$ then
 return
 end if
 for all $\text{node} \in \text{pi} _\text{ptr}[q].\text{LIST}$ do
 $\text{DEC}(\text{pi} _n[\text{node}.\text{value}])$
 end for
 $\text{pi} _\text{ptr}[q].\text{LISTREMOVE}$
 $\text{pi} _2[q] \leftarrow -1$
end procedure
\end{verbatim}

For example, for a new element q of the function π with a value $\text{pi}[q]$ it calculates $q \ast \pi(q)$, which is equal to t and all $q \ast \pi(i) = t_{1i}$, $0 \leq i < q$ and $\pi(i) \ast q = t_{2i}$, $0 \leq i < q$. For all t, t_{1i}, t_{2i} we check:

a) if they are less than or equal to q, they are compared directly with the values in the array pi;

b) if they are greater than q, check whether there is a value in $\text{pi} _2[q]$:

b1) if there is no element – add a new element;

b2) if there exists a value at this place:

b21) if the value is not equal to the value of new element – Equation (1) is not satisfied;

b22) else – add the new element to the list $\text{pi} _\text{ptr}[q]$ and increase the element $\text{pi} _n[q]$ and Equation (1) holds.

In this way of working, the obtained function π does not need to be checked again if all pairs of elements meet (1).
Function: Equation1(x, y, q)
Input: x, y – indexes of the elements of \(\pi \), q – index of the last found element;
Operation: checks the Equation (1) for x and y;
Output: 1 – Equation (1) is satisfied; 0 – not.

function Equation1(x, y, q)
 \(ls \leftarrow (\pi[x] * \pi[y]) \mod n \)
 \(t \leftarrow (x * \pi[y]) \mod n \)
 if \(t \leq q \) then
 if \(ls \neq \pi[t] \) then
 return 0
 end if
 else
 if \(\pi_2[t] \neq -1 \) and \(\pi_2[t] \neq ls \) then
 return 0
 end if
 InsertNode(q, t, ls)
 end if
 return 1
end function

The function CheckConditions does not change.

Practically the execution time of the algorithm is linear to the number of near-rings on \(\mathbb{Z}_n \). The number of near-rings grows at least twice compared to the previous \(n \). The complexity is \(O(2^n) \).

Using some proven properties to calculate the number of near-rings on finite cyclic groups of order greater than 24

We cannot use the algorithms described above to generate all near-rings and to obtain the number of near-rings on \(\mathbb{Z}_n \), \(n \geq 24 \) when \((\mathbb{Z}_n, \cdot) \) has nonzero nilpotents of second degree, because the number of these near-rings is very large ([10, Theorem 9]) and they cannot be generated in real time.

In this case, to calculate the number of near-rings, we do not generate near-rings described in [10, Theorem 9]. On generating near-rings we skip entire groups of possible near-rings corresponding to this theorem. After that the number of these skipped near-rings is calculated. This can be done with reference to [5, Corrolary 17].

\[
\text{if } i = \text{nilp}[1] \text{ and } \pi[i] = 0 \text{ then}
\]
\[
\text{nilp}_\text{all} \leftarrow 0
\]
\[
\text{nilp}_\text{zero} \leftarrow 0
\]
for $k \leftarrow 1$, nilp[1]−1 do
 if $p_i[k] = 0$ then
 INC(nilp_zero)
 end if
 if NILPOTENT($p_i[k]$) then
 INC(nilp_all)
 end if
end for
if nilp_zero < nilp[1]−1 and nilp_all = nilp[1]−1 then
 Skip the rest of the elements of π
end if

In this way we calculate the number of near-rings on \mathbb{Z}_n, for n equal to 25 and 27.

For example the number of all near-rings on \mathbb{Z}_{25} corresponding to [10, Theorem 9] is 5^{20} or 95,367,431,640,625. According to [5, Corrolary 17] we do not generate near-rings which begin with values for function π:

- $0, x_{11}, x_{12}, x_{13}, x_{14}, 0$;
- $0, 0, 0, 0, 0, 0, x_{21}, x_{22}, x_{23}, x_{24}, 0$;
- $0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x_{31}, x_{32}, x_{33}, x_{34}, 0$ and
- $0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x_{41}, x_{42}, x_{43}, x_{44}, 0$,

where $x_{ij} \in \{d_1, \ldots, d_m\}$ and one $x_{ik}, k=1, 2, 3, 4$ at least has nonzero-value; In this case we generate near-rings corresponding to [10, Theorem 9] which have values for π:

- $0, x_{51}, x_{52}, x_{53}, x_{54}$

and their number is $5^4 = 625$. For \mathbb{Z}_{25} the program generated 17887556 near-rings and number of all near-rings on \mathbb{Z}_{25} is $17887556 + 5^{20} - 5^4 = 95367449527556$.

Using the algorithms described, we generated and obtained the exact number of all near-rings on \mathbb{Z}_n, $16 \leq n \leq 29$. The results are presented in Table 1.

The obtained results for $\mathbb{Z}_{17}, \mathbb{Z}_{19}, \mathbb{Z}_{23}, \mathbb{Z}_{29}$ (n is prime) are identical with the exact values from [6] and the obtained results for non-zero-symmetric near-rings on \mathbb{Z}_n, $n = 6, 10, 14, 15, 21, 22, 26$ ($n = p.q$, p and q are primes) are identical with the exact values from [8].
Table 1. Number of near-rings on \mathbb{Z}_n, $3 \leq n \leq 29$.

<table>
<thead>
<tr>
<th>\mathbb{Z}_n</th>
<th>Zero-symmetric</th>
<th>Non-zero-symmetric</th>
<th>Total number</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{Z}_{16}</td>
<td>16 834 653</td>
<td>1</td>
<td>16 834 654</td>
</tr>
<tr>
<td>\mathbb{Z}_{17}</td>
<td>72 816</td>
<td>1</td>
<td>72 817</td>
</tr>
<tr>
<td>\mathbb{Z}_{18}</td>
<td>15 032 215</td>
<td>610 684</td>
<td>15 642 899</td>
</tr>
<tr>
<td>\mathbb{Z}_{19}</td>
<td>286 380</td>
<td>1</td>
<td>286 381</td>
</tr>
<tr>
<td>\mathbb{Z}_{20}</td>
<td>876 919</td>
<td>109 847</td>
<td>986 766</td>
</tr>
<tr>
<td>\mathbb{Z}_{21}</td>
<td>1 164 023</td>
<td>304 834</td>
<td>1 468 857</td>
</tr>
<tr>
<td>\mathbb{Z}_{22}</td>
<td>2 225 545</td>
<td>1 111 088</td>
<td>3 336 633</td>
</tr>
<tr>
<td>\mathbb{Z}_{23}</td>
<td>4 371 615</td>
<td>1</td>
<td>4 371 616</td>
</tr>
<tr>
<td>\mathbb{Z}_{24}</td>
<td>15 821 973</td>
<td>2 619 758</td>
<td>18 441 731</td>
</tr>
<tr>
<td>\mathbb{Z}_{25}</td>
<td>95 367 449 527 555</td>
<td>1</td>
<td>95 367 449 527 556</td>
</tr>
<tr>
<td>\mathbb{Z}_{26}</td>
<td>34 749 177</td>
<td>17 400 576</td>
<td>52 149 753</td>
</tr>
<tr>
<td>\mathbb{Z}_{27}</td>
<td>286 174 087 734</td>
<td>1</td>
<td>286 174 087 735</td>
</tr>
<tr>
<td>\mathbb{Z}_{28}</td>
<td>207 919 830</td>
<td>19 570 310</td>
<td>227 490 140</td>
</tr>
<tr>
<td>\mathbb{Z}_{29}</td>
<td>273 300 895</td>
<td>1</td>
<td>273 300 896</td>
</tr>
</tbody>
</table>

Table 2. Execution time of programs with algorithms 1 and 3 in minutes and seconds. Programs are executed on CPU: Intel(R) Core(TM)2 Duo P8600 @ 2.40GHz

<table>
<thead>
<tr>
<th>\mathbb{Z}_n</th>
<th>Number of near-rings</th>
<th>Algorithm 1</th>
<th>Algorithm 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{Z}_{15}</td>
<td>27 998</td>
<td>0:00</td>
<td>0:00</td>
</tr>
<tr>
<td>\mathbb{Z}_{16}</td>
<td>16 834 654</td>
<td>1:40</td>
<td>0:28</td>
</tr>
<tr>
<td>\mathbb{Z}_{17}</td>
<td>72 817</td>
<td>0:01</td>
<td>0:01</td>
</tr>
<tr>
<td>\mathbb{Z}_{18}</td>
<td>15 642 899</td>
<td>2:50</td>
<td>0:37</td>
</tr>
<tr>
<td>\mathbb{Z}_{19}</td>
<td>286 381</td>
<td>0:04</td>
<td>0:02</td>
</tr>
<tr>
<td>\mathbb{Z}_{20}</td>
<td>986 766</td>
<td>0:22</td>
<td>0:06</td>
</tr>
<tr>
<td>\mathbb{Z}_{21}</td>
<td>1 468 857</td>
<td>0:25</td>
<td>0:11</td>
</tr>
<tr>
<td>\mathbb{Z}_{22}</td>
<td>3 336 633</td>
<td>0:51</td>
<td>0:22</td>
</tr>
<tr>
<td>\mathbb{Z}_{23}</td>
<td>4 371 616</td>
<td>1:07</td>
<td>0:30</td>
</tr>
<tr>
<td>\mathbb{Z}_{24}</td>
<td>18 441 731</td>
<td>34:20</td>
<td>2:05</td>
</tr>
<tr>
<td>\mathbb{Z}_{25}</td>
<td>95 367 449 527 555</td>
<td>»</td>
<td>»</td>
</tr>
<tr>
<td>\mathbb{Z}_{26}</td>
<td>52 149 753</td>
<td>»</td>
<td>6:03</td>
</tr>
<tr>
<td>\mathbb{Z}_{27}</td>
<td>286 174 087 735</td>
<td>»</td>
<td>»</td>
</tr>
<tr>
<td>\mathbb{Z}_{28}</td>
<td>227 490 140</td>
<td>»</td>
<td>25:17</td>
</tr>
<tr>
<td>\mathbb{Z}_{29}</td>
<td>273 300 896</td>
<td>»</td>
<td>35:00</td>
</tr>
</tbody>
</table>

4. Conclusion

By using new algorithms we computed the numbers of all near-rings on \mathbb{Z}_n, $16 \leq n \leq 29$.
The empiric data accumulated from the generated near-rings allows con-
structing hypotheses and improve the lower bounds for the number of near-rings
on finite cycling groups in [10, 5].

Acknowledgements

This research has been partially supported by the project of Bulgarian
National Scientific Found from 2010.

References

Nöbauer. SONATA: Systems Of Nearrings And Their Applications, Pack-
age for the group theory system GAP4. Johannes Kepler University Linz,
Hall, 1995.
[8] Rakhnev A. K., On near-rings, whose additive groups are finite cyclics,
groups, Math. and Math. Education, Sunny Beach, Bulgaria, 1985, 280-
288. (in Bulgarian)
Stein, Introduction to Algorithms (2nd ed.). MIT Press and McGraw-Hill,

Angel Golev Faculty of Mathematics and Informatics
University of Plovdiv
236 Bulgaria Blvd.
4003 Plovdiv, Bulgaria
e-mail: angelg@uni-plovdiv.bg