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Abstract. Non-Lyapunov (h0, h)-stability analysis of time-depen-
dent non-linear large-scale systems of arbitrary order and structure is
presented. The paper develops algebraic conditions for various types of
practical and finite-time stability of the systems in terms of two multi-
valued measures. The stability properties are studied on products of
time-varying sets. The conditions guarantee a stability property of the
overall system to be implied by the corresponding stability property of
all subsystems.

Application of the aggregation-decomposition approach to the stabi-
lity analysis reduces the dimension of the overall system aggregate matrix
to the number of subsystems.

Key words: stability in terms of two multi-valued measures, large-scale
systems

Mathematics Subject Classification 2000: 34D20

1. Introduction

In general, Lyapunov stability analysis fails to guarantee the required close-
ness. For the reasons mentioned above LaSalle and Lefschetz [7] emphasized
the importance of non-Lyapunov stability investigations and developed such
investigations. Meanwhile, their results are restricted by the requirement for a
positive definiteness property of a system aggregate function.

Weiss and Infante [14] generalized essentially the Lyapunov method by
allowing a system aggregate function and its Eulerian derivative to be signin-
definite. Weiss and Infante [14, 15] prove sufficient conditions for different
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types of practical and finite-time stability. Gunderson [5] presents a significant
analysis of the concept explained above.

In papers [6] and [8] set stability and uniform set stability of systems of or-
dinary differential equations (ODE) involve known specific bounds on solutions
of systems of ODE under consideration. “Comparison theorems” are presented
given sufficient conditions for these forms of stability.

Another substantial development of the non-Lyapunov stability theory is
presented by Michel [9, 10] by relating a stability property to given time-varying
sets. In the same papers practical stability and finite-time stability of compo-
site systems are studied. The class of the systems is restricted to feedback
systems with totally stable subsystems interconnected in cascade. Michel and
Porter [11] further broaden the approach to the analysis of practical stability
of discontinuous systems.

In order to realize good performances of automatic control systems such as
those of trajectory control of space vehicles, frequency and voltage control in
power systems, air-conditioning systems, temperature and pressure control in
power plants and chemical processes one should assure their practical stability
with the prescribed settling time. The analysis of practical stability with the
settling time has been initiated by Grujic [1, 2]. In papers [3, 4] analysis of
practical stability with the settling time is generalized to that on time-varying
sets.

In this paper analysis of (h0, h)-practical stability with the settling time is
generalized to that on time-varying sets. Sufficient conditions for this stability
are given.

2. System description

A composite system S to be considered is governed by the vector differen-
tial equation

(2.1) ẋ = f(t, x, z),

where x(t) ∈ Rn is the state of the system at time t ∈ R+, R+ = [0, +∞),
z : R+ × Rn → Rm is a disturbance vector and f : R+ × Rn × Rm → Rn is
assumed to satisfy the adequate smoothness requirements so that solutions of
(2.1) denoted by x(t) = x(t; t0, x0), x(t0; t0, x0) = x0 exist and are unique and
continuous with respect to t ∈ J , and initial data. With J is denoted the time
interval [t0, t0+τ) where t0 ∈ R+ and τ ∈ R+, so that (h0, h)-practical stability
and (h0, h)-finite-time stability will be studied simultaneously. In general, it is
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not required that f(t, 0, 0) ≡ 0, which means that the origin of the state space
is not required to be an equilibrium state.

System S, eqn. (2.1), is composed of s interconnected subsystems Si given
by

(2.2) ẋi = gi(t, xi) + ri(t, x, z) for each i = 1, 2, . . . , s,

where gi : R+×Rni → Rni . Function gi(t, xi) is supposed to satisfy the usual
smoothness conditions so that solutions xi(t)=xi(t; t0, xi0), xi(t0; t0, xi0)=xi0

of the free subsystem Si represented by

(2.3) ẋi = gi(t, xi) for each i = 1, 2, . . . , s

possess the same properties as solutions of the overall system S. Vector function
ri : R+ × Rn × Rm → Rni of (2.2) is referred to as an interaction. The state
vector xi ∈ Rni of Si is the i-th component of the state vector x of the overall
system, x = (xτ

1 , xτ
2 , . . . , xτ

s )τ .
Let us list the following classes of functions:
K = {w ∈ C[Rn, R+] : w(s) is monotone increasing on s, w(0) = 0 and

w(s) →∞ as s →∞,

Γ = {h ∈ C[J ×Rn, Rn] : inf
x∈Rn

h(t, x) = 0 for each t ∈ J}.

Function h ∈ Γ is composed of hi(t, xi), h(t, x) = (h1T (t, x1), h2T (t, x2),
. . . , hST (t, xS))T .

Time-varying sets used in the sequel are assumed to possess the following
properties. Set ζ(.)(t) is a supposed to be open, connected and bounded set and
ζ(.)(t) ⊂ Rn(.) for each t ∈ J . The closure and boundary of ζ(.)(t) are denoted
by ζ(.)(t) and ∂ζ(.)(t) , respectively. We accept that ζ(.)(t) is continuous on J
(see [3]),

(2.4) ζ(.)(t) ∈ C(J).

Let ζA(t) be a given set of all allowable system states at arbitrary moment
t ∈ J\Js and let ζF (t) be a given set of all allowable states at t ∈ Js, where
Js = (t0 + τs, t0 + τ) and J\Js = [t0, t0 + τs]. With τs, τs ∈ [0, τ ], is denoted
the system settling time, which is either prespecified or should be calculated.
ζIi(t0) will be a set of all allowable hi

0(t0, xi0) of Si and Si at time t0 ∈ R+.
Set ζAi(t), ζAi(t) ⊇ ζIi(t), will be a set of all allowable hi(t, xi(t)) at time t ∈ J
and ζD(t) will be a set of all allowable disturbances z. It is accepted that
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hi(t, xi(t)) ∈ ζAi(t) for each i = 1, 2, . . . , s implies z(t, x) ∈ ζD(t) for each
t ∈ J .

Further, with ζL(t), ζL(t) ⊆ ζF (t) for each t ∈ Js is denoted an open set
such that

(2.5) VML(t) ≤ V ∂
mL(t) = Vmc(t) for each t ∈ Js,

where ζc(t) = ζA(t)\ζL(t).
A tentative aggregate function ϑi : R+ × Rni → R+, which is associated

with subsystems Si and Si is assumed differentiable, ϑi(t, xi) ∈ C(1,1)(D),
D = {(t, x) : h(t, x) ∈ [ζA(t)\(ζL(t)

⋂
ζI(t0))]}. The Eulerian derivative of

ϑi(t, xi) along motions of Si (2.3) is given by

(2.6) ϑ̇i =
∂ϑi

∂t
+ (grad ϑi)T gi for each i = 1, 2, . . . , s

and along motions of Si (2.2) by

(2.7) ϑ̇i = ϑ̇i + (grad ϑi)T ri for each i = 1, 2, . . . , s

A vector function V : R+ × Rn → Rs associated with the overall system
is composed of ϑi,

(2.8) V = (ϑ1, ϑ2, . . . , ϑs)T ,V
(.)
(..) = (ϑ (.)

i(..)).

The following usual notations will be used throughout the paper.




ϑiM(.)(t) = sup[ϑi(t, xi) : hi(t, xi) ∈ ζ(.)i(t)],

ϑ
iM(.)

(t) = sup[ϑi(t, xi) : hi(t, xi) ∈ ζ(.)i(t)],

ϑim(.)(t) = inf[ϑi(t, xi) : hi(t, xi) ∈ ζ(.)i(t)],

ϑ∂
im(.)(t) = inf[ϑi(t, xi) : hi(t, xi) ∈ ∂ζ(.)i

(t)],

ϑ
im(.)

(t) = inf[ϑi(t, xi) : hi(t, xi) ∈ ζ(.)i(t)],

ϑ(t, x) =
s∑

i=1

ϑi(t, xi).

With ‖x‖ is denoted the Euclidean norm of vector x and ∅ is the vacuous
set.
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3. Preliminaries

In this paper we shall refer to

Definition 3.1. System (2.1) is (h0, h)-practically stable with the
settling time τs with respect to {t0, J, ζI(t0), ζA(t), ζF (t), ζD(t)} if and
only if h0(t0, x0) ∈ ζI(t0) and z(t, x) ∈ ζD(t) for each (t, x) ∈ J × Rn for
which h(t, x) ∈ ζA(t) imply h(t, x(t; t0, x0)) ∈ ζA(t0) for each t ∈ J and
h(t, x(t; t0, x0)) ∈ ζF (t0) for each t ∈ Js .

Referring to Russinov [12, 13] we can easily verify

Theorem 3.1. System (2.1) is (h0, h)-practically stable with the settling
time τs with respect to {t0, J, ζI(t0), ζA(t), ζF (t), ζD(t)} if h(t, x) ∈ ζA(t)
implies z(t, x) ∈ ζD(t) for each t ∈ J and if there exist a function
ϑ ∈ R+ × Rn → R+, ϑ(t, x) ∈ C(1,1)(D), a function ϕ : R+ → R+, which
is integrable over J , a function θ ∈ K and function h0, h ∈ Γ, so that

(3.1) h(t, x(t)) ≤ θ(h0(t, x(t)))e, whenever h0(t, x(t)) ∈ ζ∗I (t),

where e ∈ Rn, e = (1, 1, . . . , 1) and ζ∗I (t) ⊂ Rn for each t ∈ J ,

(3.2) ϑ̇(t, x, z) < ϕ(t) for each (t, x) ∈ D and for each z ∈ ζD(t),

(3.3)

t∫

t0

ϕ(σ)dσ ≤ ϑ ∂
mA (t)− ϑMI(t0) for each t ∈ J\Js

and

(3.4)

t∫

t0

ϕ(σ)dσ < ϑ ∂
mL (t)− ϑMI(t0) for each t ∈ Js.

4. Main Results

In the subsequent development vector function r : R+ × Rn × Rm → Rn

is supposed to belong either to class C1 or C2, where

(4.1) C1 = {r : (grad ϑi)T ri ≤

≤
s∑

j=1

ξijϕj(t), ∀(t, x) ∈ D, ∀z ∈ ζD(t), ∀i = 1, 2, . . . , s},
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(4.2) C2 = {r : (grad ϑi)T ri ≤

≤
s∑

j=1

ξij∂ψi(t)ψj(t), ∀(t, x) ∈ D, ∀z ∈ ζD(t), ∀i = 1, 2, . . . , s},

All ξij are real numbers. Function r(t, x, z) is composed of ri(t, x, z)

(4.3) ri = (rT
1 , rT

2 , . . . , RT
s )T .

Functions ψi are supposed to satisfy the following conditions for some real
numbers µi and νi

(4.4) µi ≤ ϕi(t)ψ−2
i (t) ≤ νi, for each t ∈ J and for each i = 1, 2, . . . , s.

In the sequel every set ζ(.)(t) without subscript i, i = 1, 2, . . . , s, is accepted
to represent the Cartesian product of all ζ(.)i(t) and to be associated with the
overall system S (2.1), as used in (4.1) and (4.2),

(4.5) ζ(.)(t) =
s∏

i=1

ζ(.)i(t).

Set ζ(.)i(t) is related to the subsystem Si for each i = 1, 2, . . . , s. Further,
we introduce functions θi : R+ ×R+ → R+ and Θ : R+ ×R+ → Rs,

(4.6) θi(t0, t) =

t∫

t0

ϕi(σ)dσ,

(4.7) Θ = (θ1, θ2, . . . , θs)T .

All functions θi(t0, t) are assumed to be determined by verifying the con-
ditions of Theorem 3.1, for the corresponding subsystems Si. Besides, we shall
use a real constant aggregate s× s matrix A = (aij), where

(4.8) aij = δij + ξij for each i, j = 1, 2, . . . , s

and δij is the Kronecher symbol.

Theorem 4.1. Let h0, h ∈ Γ and let each subsystem Si (2.3) of the com-
posite system S be (hi

0, h
i)-practically stable with the settling time τs with re-

spect to {t0, J, ζIi(t), ζAi(t), ζFi(t), ∅}, which is proved by using Theorem 3.1.
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Then the overall system S (2.1) is (h0, h)-practically stable with the same set-
tling time τs with respect to {t0, J, ζI(t), ζA(t), ζF (t), ζD(t)}, ∀r ∈ C1 if

(4.9) AΘ(t0, t) ≤ V ∂
mA (t)− VMI(t0), ∀t ∈ J\Js

and

(4.10) AΘ(t0, t) ≤ V ∂
mL (t)− VMI(t0), ∀t0 ∈ Js,

where matrix A = (aij) is determined by (4.8).

Proof. The theorem will be proved by contradiction. Let the conditions of
the theorem be satisfied and yet system S (2.1) not be (h0, h)-practically stable
with the settling time τs. The assumption allows the existence of t1 ∈ J\Js

and i ∈ [1, s] such that

(4.11) hi(t, xi(t1; t0, xi0)) ∈ ∂ζAi(t1),

hi
0(t0, xi0) ∈ ζIi(t0), z ∈ ζD(t), ∀t ∈ [t0, t1].

Let time t1 be the first moment satisfying (4.11). For each interconnected
subsystem Si we may write

(4.12) ϑi[t, xi(t; t0, xi0)] = ϑi(t0, xi0) +

t∫

t0

ϑ̇i[σ;xi(σ; t0, xi0)]dσ .

The stability property of each free subsystem Si is established by utilizing
Theorem 3.1. Therefore, (3.1), (3.2) and (3.3) hold for all free subsystems.
Using (3.2), (3.3), (4.1), (4.6)–(4.8) and (4.12) we get ϑi[t1, xi(t1; t0, xi0)] <

ϑiMIi(t0) +
s∑

j=1

aijθj(t0, t).

This result, together with (4.9), implies ϑi[t1, xi(t1; t0, xi0)] < ϑ ∂
imAi (t1),

which can be valid only if hi(t1, xi(t1; t0, xi0)) /∈ ∂ζAi(t1). But, this contra-
dicts the original assumption (4.11). Therefore, hi(t, xi(t; t0, xi0)) ∈ ζAi(t),
∀t ∈ J\Js, for each (t0, x0) ∈ J × Rn for which hi(t0, xi0) ∈ ζIi(t0),
∀z ∈ ζD(t), ∀i = 1, 2, . . . , s.

If we again suppose that system S is not (h0, h)-practically stable with the
settling time τs despite the conditions of the theorem, then there could exist
t2 ∈ Js and i ∈ [1, s] so that

(4.13) hi(t2, xi(t2; t0, xi0)) ∈ ∂ζAi(t2), hi
0(t0, xi0) ∈ ζIi(t0).
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Let t2 ∈ Js be the first moment for which (4.13) is valid. Using (2.5),
(3.1)–(3.4) applied to all subsystems Si, (4.1), (4.6)–(4.10) and (4.12) we get
ϑi[t2, xi(t2; t0, xi0)] ≤ ϑ ∂

imLi (t2) ≤ ϑimCi(t2), t2 ∈ Js.
Therefore, hi(t2, xi(t2; t0, xi0)) /∈ ∂ζAi(t2), t2 ∈ Js which disproves (4.13)

and demonstrates that h(t, x(t; t0, x0)) /∈ ζA(t) for each t ∈ J . This result and
ϑi[t1, xi(t; t0, xi0)] ∈ ϑ ∂

imLi (t) = ϑimCi(t) imply hi(t, xi(t; t0, xi0)) ∈ ζL(t) ⊆
ζF (t), ∀hi

0(t0, xi0) ∈ ζIi(t0),∀z ∈ ζD(t), ∀t ∈ Js, which completes the proof. ¤

Corollary 4.1. Let h0, h ∈ Γ and let each subsystem Si (2.3) of the com-
posite system S (2.1) be (hi

0, h
i)-practically stable with respect to {t0, J, ζIi(t0),

ζAi(t)}, which is proved by using Theorem 3.1 for the case ζFi(t) ≡ ζAi(t),
ζD(t) ≡ ∅, τs = τ, Js = ∅. Then the overall system S (2.1) is totally stable
with respect to {t0, J, ζI(t0), ζA(t), ζD(t)}, ∀r ∈ C1 if

(4.14) AΘ(t0, t) ≤ V ∂
mA (t)− VMI(t0), ∀t ∈ J

provided that matrix A = (aij) is determined by (4.8).
In some cases the composite system S is not disturbed by vector z, i.e.

ζD(t) ≡ ∅. Then it can be significant to analyze the (h0, h)-practical stability
of the system S with respect to {t0, J, ζI(t0), ζA(t)}.

Corollary 4.2. Let h0, h ∈ Γ and let each subsystem Si (2.3) of the
composite system S be (hi

0, h
i)-practically stable with respect to {t0, J, ζIi(t0),

ζAi(t)}, which is proved by using Theorem 3.1 for the case ζFi(t) ≡ ζAi(t),
ζD(t) ≡ ∅, τs = τ, Js = ∅. Then the overall system S (2.1) is (h0, h)-
practically stable with respect to {t0, J, ζI(t0), ζA(t)}, ∀r ∈ C1 if (4.14) hold,
provided that matrix A = (aij) is determined by (4.8).

Example 4.1. Composite system S of dimension n = 6 consists of three
second order (ni = 2,∀i = 1, 2, 3) subsystems Si described by

ẋi = A(t)xi, A(t) =
( −3.1(1 + t)−1 2

−2 −3.1(1 + t)−1

)
.

System interactions ri are given by

r1(t, x) =
1

2(1 + t)2

(
sat(x21 + x31)
sat(2x22 + x32)

)
,

r2(t, x) =
1

2(1 + t)2

(
sat(0.1x11 + 0.4x32)
sat(0.7x12 + 0.7x31)

)
,

r3(t, x) =
1

2(1 + t)2

(
sat(x12 + x21)
sat(x11 + x22)

)
,
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where sat ρ =
{

sign ρ, |ρ| ≥ 1
ρ, |ρ| ≤ 1 .

Let hi
0(t, xi) = hi(t, xi) = ‖xi‖, i = 1, 2, 3. We want to test (h0, h)-

practical stability with the settling time τs = (e
1
2 − 1) of composite system S

given above with respect to {0, J, ζI(0), ζA(t), ζF (t),∅}, where J = [0, e4 − 1),

ζIi(0) = {(t, xi) : hi
0(0, xi) < e1/2}, ζAi(t) = {(t, xi) : hi(t, xi) < (e/(1+t))},

ζ(.)(t) =
3∏

i=1

ζ(.)i(t), ζFi(t) = {(t, xi) : hi(t, xi) < (1/(1+t))},

Di = {(t, xi) : (1/(1 + t)) ≤ hi(t, xi) ≤ (e/(1 + t))}, D =
3∏

i=1

Di.

Sign-indefinite function ϑi(t, xi) = 2 ln(1 + t).‖xi‖ ∈ C(1.1)(D) is a can-
didate aggregate function of subsystems Si, ∀i = 1, 2, 3. At first we determine
VMi(0) = (1, 1, 1, 1)τ ; V ∂

mA
(t) = (2, 2, 2, 2)τ , ∀t ∈ J .

Further, ζLi(t) ≡ ζFi(t) is accepted so that V ∂
mL (t) = 0, VmC(t) =

V ∂
mL

(t), ∀t ∈ J .
The last equation shows that all ϑi(t, xi) satisfy (2.5). Since

ϑ̇i(t, xi) = −(4.2/(1 + t)), ∀hi(t, xi) ∈ ζAi(t), ∀t ∈ J

we can set ϕi(t) = −4(1+t)−1, ∀i = 1, 2, 3. Therefore θi(0, t) = −4 ln(1+t),
Θ(0, t) = −4(1, 1, 1)τ ln(1 + t), Θ(0, t) < (1, 1, 1)τ = V ∂

mA (t) − VMI(0),
∀t ∈ J\Js, Θ(0, t) < −(2, 2, 2)τ < −(1, 1, 1)τ = V ∂

mA (t) − VMI(0), ∀t ∈ Js

which proves (Theorem 3.1) (hi
0, h

i)-practical stability with the settling time
τs = (e1/2−1) of each subsystem Si with respect to {0, J, ζIi(0), ζAi(t), ζFi(t),∅}.
Further

gradϑi = 2xi‖xi‖−2, ∀i = 1, 2, 3

and
(grad ϑ1)T r1 ≤ 1

4
ϕ1(t)− 1

8
[ϕ2(t) + ϕ3(t)], ∀(t, x) ∈ D,

(grad ϑ2)T r2 ≤ −1
8
ϕ1(t)− 1

4
ϕ2(t)− 1

8
ϕ3(t), ∀(t, x) ∈ D,

(grad ϑ3)T r3 ≤ −1
8
[ϕ1(t) + ϕ2(t)]− 1

4
ϕ3(t), ∀(t, x) ∈ D,

so that ξ11 = − 1
4 , ξ12 = ξ13 − 1

8 , ξ21 = − 1
8 , ξ22 = − 1

4 , ξ23 = − 1
8 ,

ξ31 = ξ32 = − 1
8 , ξ33 = − 1

4 .
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Matrix A (4.8) is now obtained as

A =
1
8




6 −1 −1
−1 6 −1
−1 −1 6




so that

AΘ(0, t) = −1
2




1
1
1


 ln(1 + t)4 <




1
1
1


 = V ∂

mA(t)− VMI(0), ∀t ∈ (J\Js),

AΘ(0, t) < −



1
1
1


 = V ∂

mL (t)− VMI(0), ∀t ∈ Js.

These results demonstrate that all conditions of Theorem 4.1 are satis-
fied. The composite system is (h0, h)-practically stable with the settling time
τs = (e1/2 − 1) with respect to {0, J, ζI(0), ζA(t), ζF (t), ∅}.

In the sequel all aggregate functions ϕi(t) are assumed to be sign-semidefi-
nite,

(4.15) ϕi(t)
{ ≥ 0, ∀i = 1, 2, . . . , k
≤ 0, ∀i = k + 1, k + 2, . . . , s, ∀t ∈ J

}
.

Functions ψi(t) are supposed to obey

(4.16) |ψi(t)| = [εiϕi(t)]1/2, ∀i = 1, 2, . . . , s,

where εi =
{

1, ∀i = 1, 2, . . . , k
−1, ∀i = k + 1, k + 2, . . . , s.

In what follows we shall use a constant vector

(4.17) ε = (ε1, ε2, . . . , εs)T .

Besides, we introduce a symmetric s × s matrix B = (bij) with constant
elements bij determined by

(4.18) bij = εiδij +
1
2
(ξij + ξji), ∀i, j = 1, 2, . . . , s,

where ξij are given by (4.2). With Λ(B) will be denoted the maximal eigen-
value of the matrix B. Using the previous notations we can state a criterion
for (h0, h)-practical stability with the settling time of composite systems on
product spaces.
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Theorem 4.2. Let h0, h ∈ Γ and let each subsystem Si (2.3) of compo-
site system S (2.1) be (hi

0, h
i)-practically stable with the settling time τs with

respect to {t0, J, ζIi(t0), ζAi(t), ζFi(t), ∅}, which is proved by using Theo-
rem 3.1, and let all functions ϕi(t) of the same theorem be sign-semidefinite
(4.15). Then the overall system S (2.1) is (h0, h)-practically stable with the
same settling time τs with respect to {t0, J, ζI(t0), ζA(t), ζF (t), ζD(t)}, ∀r ∈ C2

(4.2), (4.16) if the following hold:

Λ(B)εT Θ(t0, t) ≤ ϑ ∂
mA (t)− ϑMI(t0), ∀t ∈ J\Js,

Λ(B)εT Θ(t0, t) ≤ ϑ ∂
mL (t)− ϑMI(t0), ∀t ∈ Js

provided the elements bij of the matrix B are determined by (4.2) and (4.18),

where ϑ =
s∑

i=1

ϑi.

If we accept ϕ(t) = Λ(B)
s∑

j=1

εjϕj(t), then we easily prove Theorem 4.2 as

a consequence of Theorem 3.1. Theorem 4.2 can also be used to test other
(h0, h)-practical stability and (h0, h)-finite-time stability properties of compo-
site systems.

Example 4.2. Subsystems Si(ni = 2) are described by

ẋi = (1 + t)3Aixi, Ai =
( −12.1 4

0 −16.1

)
.

System interactions are defined by

r1(t, x) =
( −2(1+t)4 sat 0.1x11 + 0.5α(x11+x22)
−2(1+t)4 sat 0.1x12 + 0.5α(x12+x21)

)
,

r2(t, x) = 0.5
(

β(x12)
β(x11)

)
,

where non-linearities α(ζ) and β(ζ) are depicted in Figure 1.
Let hi

0(t, xi) = hi(t, xi) = ‖xi‖, i = 1, 2. We want to test the (h0, h)-
practical stability with the settling time τs = 2 of the composite system S
defined above with respect to t0 = 0, τ = +∞, and the products (4.5) of sets

ζIi(0) = {(t, xi) : hi
0(0, xi) < 2},

ζAi(t) = {(t, xi) : hi(t, xi) <
10

1 + t
},
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ζFi(t) = {(t, xi) : hi(t, xi) <
1

1 + t2
},

Di = {(t, xi) :
1

1 + t2
≤ hi(t, xi) ≤ 10

1 + t
}.

Figure 1. Non-linearities of Example 4.2

Function ϑi(t, xi) = ‖xi‖, i = 1, 2, is chosen as a candidate aggregate
function of subsystem Si. Then we select ζLi(t) ≡ ζFi(t), and find

ϑ̇i(t, xi) < −2(1 + t) = ϕi(t), θi(0, t) = −(2t + t2),

∀i = 1, 2, ∀hi(t, xi) ∈ ζAi(t), ∀t ∈ J,

VMI(0) =
(

2
2

)
, V ∂

mA (t) =
10

1 + t

(
1
1

)
, V ∂

mL (t) =
1

1 + t2

(
1
1

)
.

So that and V ∂
mL (t) ≡ VmC(t) and

Θ(0, t) = −(2t + t2)
(

1
1

)
<

8− 2t

1 + t

(
1
1

)
= V ∂

mA (t)− VMI(0), ∀t ∈ J\Js,

Θ(0, t) = −(2t + t2)
(

1
1

)
< −1 + 2t2

1 + t2

(
1
1

)
= V ∂

mL (t)− VMI(0),∀t ∈ Js.

These results prove (Theorem 3.1) that subsystem Si is (hi
0, h

i)-practically
stable with the settling time τs=2 with respect to {0, J, ζIi(0), ζAi(t), ζFi(t),∅},
∀i = 1, 2.
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Further, we find and gradϑi = xi‖xi‖−1 and

(grad ϑ1)T r1 ≤ −0.1ψ2
1(t) + 0.5ψ1(t)ψ2(t), ∀(t, x) ∈ D,

(grad ϑ2)T r2 ≤ ψ1(t)ψ2(t), ∀(t, x) ∈ D,

ψi(t) = [2(1 + t)]1/2, ∀i = 1, 2; ξ11 = −0.1, ξ12 = 0.5, ξ21 = 1, ξ22 = 0.

Matrix B (4.18) is now obtained as

B =
( −1.1 0.75

0.75 −1

)
, Λ(B) = −0.59.

Vector ε is given by ε = (−1,−1)T so that

Λ(B)εT Θ(0, t) = −1.18(2t + t2)

and

Λ(B)εT Θ(0, t) <





2(8−2t)
1+t = ϑ ∂

mA (t)− ϑMI(0), ∀t ∈ J\Js

− 2(1+2t2)
1+t2 = ϑ ∂

mL (t)− ϑMI(0), ∀t ∈ Js,

where ϑ =
2∑

i=1

ϑi.

All conditions of Theorem 4.2 are satisfied and we may conclude that the
composite system S is (h0, h)-practically stable with the settling time τs = 2
with respect to {0, J, ζI(0), ζA(t), ζF (t), ∅}.

In some cases conditions (4.16) can be restrictive. In order to relax con-
ditions imposed of the system we shall present another criterion for its (h0, h)-
practical stability with the settling time. Let

(4.19) c = (c1, c2, . . . , cs)T , cj =
s∑

i=1

aij , ∀j = 1, 2, . . . , s,

where are determined by (4.8).

Theorem 4.3. Let h0, h ∈ Γ and let each subsystem Si (2.3) of the large-
scale system S (2.1) be (hi

0, h
i)-practically stable with the settling time τs with

respect to {t0, J, ζIi(t0), ζAi(t), ζFi(t), ∅}, which is proved by using Theo-
rem 3.1. Then the overall system S (2.1) is (h0, h)-practically stable with
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the same settling time τs with respect to {t0, J, ζI(t0), ζA(t), ζF (t), ζD(t)},
∀r ∈ C1, if

cT Θ(t0, t) ≤ ϑ ∂
mA (t)− ϑMI(t0), ∀t ∈ J\Js,

cT Θ(t0, t) ≤ ϑ ∂
mL (t)− ϑMI(t0), ∀t ∈ Js,

where vector c is determined by (4.19) and ϑ =
s∑

i=1

ϑi.

Theorem 4.3 is easily verified by referring to Theorem 3.1.

Example 4.3. System S is composed of three subsystems Si described
by

ẋi = Ai(t)xi, Ai(t) =
( −18(1 + t) 2 sin t

−2 sin t −18(1 + t)

)
, ∀i = 1, 2, 3

and interactions

r1(t, x) =
1 + t

4

(
x11 x21

x12 x31

)
,

r2(t, x) =
0.1

1 + t

(
x31

x11

)
,

r3(t, x) =
1
40

(
x11 x21

x12 x22

)
.

Let hi
0(t, xi) = hi(t, xi) = ‖xi‖. We want to test the (h0, h)-practical

stability with the settling time τs = 9 of the composite systems S if t0 = 0,
τ = +∞,

ζIi(0) = {(t, xi) : hi(0, xi) < 10},

ζAi(t) = {(t, xi) : hi(t, xi) <
10

(1 + t)2
},

ζFi(t) = {(t, xi) : hi(t, xi) <
1

(1 + t)2
}

and
Di = {(t, xi) :

1
(1 + t)2

≤ hi(t, xi) ≤ 10
(1 + t)2

}.
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At first we test the same stability property of all subsystems. Function
ϑi(t, xi) = ln(1 + t)2‖xi‖ is proposed as a candidate aggregate function for
subsystems Si. We can choose ζLi(t) ≡ ζFi(t). It is found

ϑiMIi(0) = ln 10, ϑ ∂
imAi = ln 10, ϑ ∂

imLi (t) ≡ ϑimCi(t) = 0

and
ϑi(t, xi) < ϕi(t), ϕi(t) = −16(1 + t)−1

for each (t, xi) for which hi(t, xi) ∈ ζAi(t), ∀t ∈ J , which implies θi(0, t) =
−16 ln(1 + t). With this result we can test the (hi

0, h
i)-practical stability with

the settling time τs = 9 of all subsystems. It is obtained

θi(0, t) = −16 ln(1+t) ≤




0 = ϑ ∂
imAi (t)− ϑiMIi(0),∀t ∈ J\Js

− ln 10 = ϑ ∂
imLi (t)− ϑiMIi(0),∀t ∈ Js,∀i=1, 2, 3.

Applying Theorem 3.1, all conditions of which are satisfied, we conclude
that each subsystem Si, i = 1, 2, 3, is (hi

0, h
i)-practically stable with the settling

time τs = 9 with respect to {0, J, ζIi(0), ζAi(t), ζFi(t), ∅}. To test the (h0, h)-
stability property of the overall system we find

gradϑi = xi‖xi‖−2

(gradϑ1)T r1 ≤ − 5
32

ϕ2(t)− 5
32

ϕ3(t),∀(t, x) ∈ D,

(gradϑ2)T r2 ≤ − 5
32

ϕ1(t)− 5
32

ϕ3(t),∀(t, x) ∈ D,

(gradϑ3)T r3 ≤ − 5
32

ϕ1(t)− 5
32

ϕ2(t),∀(t, x) ∈ D.

Elements aij (4.8) of the matrix A are easily calculated as follows:

a11 = 1, a12 =
5
32

, a13 = − 5
32

, a21 = − 5
32

,

a22 = 1, a23 = − 5
32

, a31 = − 5
32

, a32 = − 5
32

, a33 = 1.

Vector c (4.19) is given by

c =
11
16

(1, 1, 1)T .
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Since
cT Θ(0, t) = −33 ln(1 + t) ≤ 0, ∀t ∈ J,

ϑ ∂
mA (t) = 3 ln 10, ∀t ∈ J, ϑ ∂

MI
(0) = 3 ln 10 and ϑ ∂

mL (t) = 0, ∀t ∈ J

we can easily verify all conditions of Theorem 4.3,

cT Θ(0, t) = −33 ln(1 + t) ≤
{

0 = ϑ ∂
mA (t)− ϑMI(0), ∀t ∈ J\Js

−3 ln 10 = ϑ ∂
mL (t)− ϑMI(0), ∀t ∈ Js,

where ϑ =
3∑

i=1

ϑi.

These results prove that the system S is (h0, h)-practically stable with the
settling time τs = 9 with respect to {0, J, ζI(0), ζA(t), ζF (t), ∅}.

5. Conclusions

Algebraic criteria have been developed for various types of (h0, h)-practical
stability and (h0, h)-finite-time stability of large-scale systems on product spaces.
To apply the conditions it is necessary to prove (hi

0, h
i)-practical stability or

(hi
0, h

i)-finite-time stability of all subsystems and to use information about
interactions. Such an aggregate-decomposition approach has resulted in the
reduction of the dimension of the system aggregate matrix to the number of
subsystems. Furthermore, no restriction is imposed on either system dimen-
sionality or its structure.

The stability analysis in terms of two multi-valued measures has been
carried out on products of time-varying sets, which provides information about
the trajectory bounds and the settling time of the overall system.
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ÀÍÀËÈÇ ÍÀ ÍÅËßÏÓÍÎÂÀ ÓÑÒÎÉ×ÈÂÎÑÒ ÍÀ
ÑÈÑÒÅÌÈ Ñ ÃÎËßÌÀ ÐÀÇÌÅÐÍÎÑÒ ÑÏÐßÌÎ
ÌÍÎÆÅÑÒÂÀ, ÇÀÂÈÑÅÙÈ ÎÒ ÂÐÅÌÅÒÎ, ÏÎ
ÎÒÍÎØÅÍÈÅ ÍÀ ÄÂÅ ÌÍÎÃÎÌÅÐÍÈ ÌÅÐÊÈ

Èâàí Ê. Ðóñèíîâ

Ðåçþìå. Ïðåäñòàâÿ ñå àíàëèç íà íåëÿïóíîâà (h0, h)-óñòîé÷èâîñò íà
íåëèíåéíè ñèñòåìè ñ ãîëÿìà ðàçìåðíîñò îò ïðîèçâîëåí ðåä è ñòðóêòóðà,
êîèòî çàâèñÿò îò âðåìåòî. Â ñòàòèÿòà ñà ïîëó÷åíè àëãåáðè÷íè óñëîâèÿ çà
ðàçëè÷íè âèäîâå ïðàêòè÷åñêà óñòîé÷èâîñò è óñòîé÷èâîñò íà êðàåí èíòåðâàë
íà ñèñòåìè ïî îòíîøåíèå íà äâå ìíîãîìåðíè ìåðêè. Ñâîéñòâàòà íà óñòîé÷è-
âîñòòà ñå èçñëåäâàò ñïðÿìî ìíîãîìåðíè ìíîæåñòâà, çàâèñåùè îò âðåìåòî.
Óñëîâèÿòà îñèãóðÿâàò äàäåíî ñâîéñòâî çà óñòîé÷èâîñò íà öÿëàòà ñèñòåìà
äà ñëåäâà îò ñúîòâåòíîòî ñâîéñòâî çà óñòîé÷èâîñò íà âñè÷êè ïîäñèñòåìè.

Ïðèëîæåíèåòî íà ïîäõîäà íà àãðåãèðàíå è äåêîìïîçèðàíå êúì àíàëèçà
íà óñòîé÷èâîñòòà íàìàëÿâà ðàçìåðíîñòòà íà àãðåãèðàíàòà ìàòðèöà íà öÿ-
ëàòà ñèñòåìà äî áðîÿ íà ïîäñèñòåìèòå.
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