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Abstract. Non-Lyapunov (hg, h)-stability analysis of time-depen-
dent non-linear large-scale systems of arbitrary order and structure is
presented. The paper develops algebraic conditions for various types of
practical and finite-time stability of the systems in terms of two multi-
valued measures. The stability properties are studied on products of
time-varying sets. The conditions guarantee a stability property of the
overall system to be implied by the corresponding stability property of
all subsystems.

Application of the aggregation-decomposition approach to the stabi-

lity analysis reduces the dimension of the overall system aggregate matrix
to the number of subsystems.
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1. Introduction

In general, Lyapunov stability analysis fails to guarantee the required close-
ness. For the reasons mentioned above LaSalle and Lefschetz [7] emphasized
the importance of non-Lyapunov stability investigations and developed such
investigations. Meanwhile, their results are restricted by the requirement for a
positive definiteness property of a system aggregate function.

Weiss and Infante [14] generalized essentially the Lyapunov method by
allowing a system aggregate function and its Eulerian derivative to be signin-
definite. Weiss and Infante [14, 15] prove sufficient conditions for different
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types of practical and finite-time stability. Gunderson [5] presents a significant
analysis of the concept explained above.

In papers [6] and [8] set stability and uniform set stability of systems of or-
dinary differential equations (ODE) involve known specific bounds on solutions
of systems of ODE under consideration. “Comparison theorems” are presented
given sufficient conditions for these forms of stability.

Another substantial development of the non-Lyapunov stability theory is
presented by Michel [9, 10] by relating a stability property to given time-varying
sets. In the same papers practical stability and finite-time stability of compo-
site systems are studied. The class of the systems is restricted to feedback
systems with totally stable subsystems interconnected in cascade. Michel and
Porter [11] further broaden the approach to the analysis of practical stability
of discontinuous systems.

In order to realize good performances of automatic control systems such as
those of trajectory control of space vehicles, frequency and voltage control in
power systems, air-conditioning systems, temperature and pressure control in
power plants and chemical processes one should assure their practical stability
with the prescribed settling time. The analysis of practical stability with the
settling time has been initiated by Grujic [1, 2]. In papers [3, 4] analysis of
practical stability with the settling time is generalized to that on time-varying
sets.

In this paper analysis of (hg, h)-practical stability with the settling time is
generalized to that on time-varying sets. Sufficient conditions for this stability
are given.

2. System description

A composite system S to be considered is governed by the vector differen-
tial equation

(2.1) = f(t,x, 2),

where z(t) € R™ is the state of the system at time t € RT, RT = [0, +00),
z: Rt x R® — R™ is a disturbance vector and f : RT x R* x R™ — R" is
assumed to satisfy the adequate smoothness requirements so that solutions of
(2.1) denoted by x(t) = x(¢;to, zo), x(to;to,x0) = xo exist and are unique and
continuous with respect to t € J, and initial data. With J is denoted the time
interval [to, to+7) where tg € RT and 7 € R™, so that (ho, h)-practical stability
and (hg, h)-finite-time stability will be studied simultaneously. In general, it is
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not required that f(¢,0,0) = 0, which means that the origin of the state space
is not required to be an equilibrium state.

System S, eqn. (2.1), is composed of s interconnected subsystems S; given
by

(2.2) 2 = gi(t,x;) +ri(t,x,z) foreach i=1,2,... s,

where g; : Rt x R — R™ . Function g;(t,x;) is supposed to satisfy the usual
smoothness conditions so that solutions x;(t)=1x;(t; to, Zio0), xi(to; to, Tio)=Zs0
of the free subsystem S; represented by

(2.3) a; = gi(t,x;) foreach i=1,2,... s

possess the same properties as solutions of the overall system S. Vector function
ri: RT x R™ x R™ — R™ of (2.2) is referred to as an interaction. The state
vector x; € R™ of S; is the i-th component of the state vector = of the overall
system, x = (27,23,...,27)"

Let us list the following classes of functions:

K = {w € C[R",R"] : w(s) is monotone increasing on s, w(0) = 0 and
w(s) — 0o as s — 00,

r={heClJxR",R": wien}gnh(t,x) =0 for each te J}.

Function h € T is composed of hi(t,z;), h(t,z) = (h'T(t,z1), h?T(t, x2),
o BT ()T

Time-varying sets used in the sequel are assumed to possess the following
properties. Set ((y(t) is a supposed to be open, connected and bounded set and
C()(t) € RO for each t € J. The closure and boundary of {((t) are denoted
by () (t) and 9¢()(t) , respectively. We accept that ((¢) is continuous on J
(see [3]),

(2.4) C(.)(t) e C(J).

Let Ca(t) be a given set of all allowable system states at arbitrary moment
t € J\Js and let (r(t) be a given set of all allowable states at ¢ € J,, where
Js = (to + 7s,t0 + 7) and J\Js = [to, to + 75]. With 75,75 € [0, 7], is denoted
the system settling time, which is either prespecified or should be calculated.
Cri(to) will be a set of all allowable h (tg, z0) of S; and S; at time to € R™T.
Set Cai(t), Cai(t) 2 (ri(t), will be a set of all allowable hi(t, z;(t)) at time t € J
and (p(t) will be a set of all allowable disturbances z. It is accepted that
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hi(t,z;(t)) € Cai(t) for each i = 1,2,...,s implies z(t,z) € (p(t) for each
teld.

Further, with (1 (t),(r(t) C (r(t) for each ¢t € Js is denoted an open set
such that

(2.5) Varn(t) < V2, (t) = Ving(t) for each t e Jj,

where (e (t) = Ca(t)\CL(?).
A tentative aggregate function 9; : RT x R™ — R*, which is associated
with subsystems S; and S; is assumed differentiable, ¥;(t,z;) € ctD (D),

D = {(t,z) : h(t,x) € [Ca(®)\(CL(t)NC1(t0))]}- The Eulerian derivative of
9,(t, z;) along motions of S; (2.3) is given by

0vY;
ot

(2.6) 0; = + (grad9;)Tg; for each i=1,2,...,s

and along motions of S; (2.2) by
(2.7) ¥ = 0; + (grad9;)Tr; foreach i=1,2,...,s

A vector function V : Rt x R™ — R® associated with the overall system
is composed of ¥;,

The following usual notations will be used throughout the paper.

Dine()(t) = sup[dy(t, ;) = b, 25) € ((yi(t)],
Oiarcy(t) = supl[9i(t, ) = W' (t, @) € Cyilt)],
Wi () (t) = Inf [0 (¢, ) : B (¢, 2:) € Cryalt)],
05y (8) = inf[9:(t, 27) « B (¢, 2) € D, (B)],
Vi () = mf[0s(t, 27) : h(t,2;) € i),
0(t.) = (k)

With ||z|| is denoted the Euclidean norm of vector x and @ is the vacuous
set.
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3. Preliminaries
In this paper we shall refer to

Definition 3.1. System (2.1) is (ho, h)-practically stable with the
settling time 7, with respect to {to, J, (r(to), Ca(t), Cr(t), Cp(t)} if and
only if ho(tg,z0) € Cr(to) and z(t,x) € (p(¢t) for each (¢t,x) € J x R™ for
which h(t,z) € Ca(t) imply h(t,z(t;tg,z0)) € Calto) for each t € J and
h(t,z(t;to, o)) € Cr(to) for each t € J; .

Referring to Russinov [12, 13] we can easily verify

Theorem 3.1. System (2.1) is (ho, h)-practically stable with the settling
time 7, with respect to {tg, J, C1(to), Ca(t), Cr(t), Cp(t)} if h(t,z) € Ca(t)
implies z(t,x) € (p(t) for each t € J and if there exist a function
¥ € Rt x R* — R*, 9(t,x) € CHV(D), a function ¢ : Rt — R*, which
is integrable over J, a function 6 € K and function hg,h € T', so that

(3.1) h(t,x(t)) < 0(ho(t,z(t)))e, whenever hgo(t,z(t)) € (F(t),
where e € R",e = (1,1,...,1) and (j(t) C R™ for each t € J,

(3.2) I(t,x,2) < p(t) for each (t,x) € D and for each z € (p(t),

t

(3.3) / p(o)do < 9,,,°(t) — V577(to) for each t € J\J;
to
and
t
(3.4) /(p(a)da < 0,,.2(t) — 9377(to) for each t € J.
to

4. Main Results

In the subsequent development vector function r : Rt x R* x R™ — R"
is supposed to belong either to class C; or Cy, where

(4.1) Cy = {r: (gradv;)Tr; <

< &ei(t), V(t,x) €D, V2 € (p(t), Vi=1,2,...,5},
j=1
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(4.2) Co={r:(gradv;)Tr; <

<) Gioi();(t), V(t,x) € D, V2 € (p(t), Vi=1,2,...,s},
j=1
All &;; are real numbers. Function r(¢,x, z) is composed of 7;(¢, x, z)

(4.3) r; = (r1T7r§,...,RST)T.

Functions 1; are supposed to satisfy the following conditions for some real
numbers p; and v;

(4.4) i < ()Y (t) < vy, foreach t € J and for each i=1,2,...,s.

In the sequel every set C(,)(t) without subscript 7,7 = 1,2,..., s, is accepted
to represent the Cartesian product of all ();(¢) and to be associated with the
overall system S (2.1), as used in (4.1) and (4.2),

(4.5) Co®) =TT <0
=1

Set ((.yi(t) is related to the subsystem S; for each i = 1,2,...,s. Further,
we introduce functions §; : R* x Rt — Rt and © : R* x Rt — R*,

t

(46) ai(to,t) :/gpi(cr)dcr,

to

(4.7) O = (61,6s,...,0,)7.

All functions 6;(to,t) are assumed to be determined by verifying the con-
ditions of Theorem 3.1, for the corresponding subsystems S;. Besides, we shall
use a real constant aggregate s x s matrix A = (a;;), where

(4.8) a;; = 0;; +&; foreach i,j=1,2,...,s

and 6;; is the Kronecher symbol.

Theorem 4.1. Let hg,h € T and let each subsystem S; (2.3) of the com-
posite system S be (h, h?)-practically stable with the settling time 7, with re-
spect to {to, J, Cri(t), Cai(t), (ri(t), @}, which is proved by using Theorem 3.1.
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Then the overall system S (2.1) is (hg, h)-practically stable with the same set-
tling time 75 with respect to {to, J, (1(t), Ca(t), Cr(t), Cp ()}, Vr € C if

(4.9) AB(tg,t) < V4 2(t) — Varg(to), Yt € J\J;
and
(4.10) AB(to,t) <V, 2(t) — Varr(to), Vo € Js,

where matrix A = (a;j) is determined by (4.8).

Proof. The theorem will be proved by contradiction. Let the conditions of
the theorem be satisfied and yet system S (2.1) not be (hg, h)-practically stable
with the settling time 7,. The assumption allows the existence of t; € J\Js
and ¢ € [1, s] such that

(411) hl(t, $i(t1;t0,xi0)) (S 3(Ai(t1),
hi(to, i) € Cri(to), z € Cp(t), Vi € [to, t1].

Let time ¢; be the first moment satisfying (4.11). For each interconnected
subsystem S; we may write

t
(412) ﬁi[t,xi(t;to, (Em)] = ’l?i(to,xio) —|- /’léi[O'ﬂEi(J;to, (Eio)]dd .

to

The stability property of each free subsystem S; is established by utilizing
Theorem 3.1. Therefore, (3.1), (3.2) and (3.3) hold for all free subsystems.
Using (3.2), (3.3), (4.1), (4.6)—(4.8) and (4.12) we get 9;[t1, zi(t1;t0, Tio)] <

S

Vi (to) + D aii0;(to, t).
=1

This result, together with (4.9), implies 9;[t1, x;(t1; to, 7i0)] < U;,,4,° (t1),
which can be valid only if hi(ty,x;(t1;t0, i0)) ¢ OCai(t1). But, this contra-
dicts the original assumption (4.11). Therefore, h'(t,z;(t;to, zi0)) € Cai(t),
vt € J\Js, for each (tg,m9) € J x R™ for which hi(tg,z40) € C(ri(to),
Vze(p(t), Vi=1,2,...,s.

If we again suppose that system S is not (hg, h)-practically stable with the
settling time 75 despite the conditions of the theorem, then there could exist

to € Jg and i € [1, 5] so that
(4.13) R (ta, mi(t2; to, Ti0)) € OCai(ta), hi(to,Ti0) € Cri(to).
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Let to € Jg be the first moment for which (4.13) is valid. Using (2.5),
(3.1)—(3.4) applied to all subsystems S;, (4.1), (4.6)—(4.10) and (4.12) we get
Dilta, zi(ta; to, xi0)] < 0,17 (t2) < Vig(t2), b2 € Js.

Therefore, h'(ta, x;(t2; to, xi0)) & 0Cai(t2),t2 € Js which disproves (4.13)
and demonstrates that h(t, z(t;to, zo)) ¢ Ca(t) for each t € J. This result and
ﬁi[thxi(t;to,wio)] S ﬁimLia(t) = ﬁm(t) imply hi(t,l‘i(t;to,l‘io)) S CL(t> -

Cr(t), YR (to, i0) € Crito), V2 € Cp(t),Vt € Jg, which completes the proof. [J

Corollary 4.1. Let hg,h € T and let each subsystem S; (2.3) of the com-
posite system S (2.1) be (h, h*)-practically stable with respect to {to, J, C:(to),
Cai(t)}, which is proved by using Theorem 3.1 for the case (p;(t) = Cai(t),
(p(t) = @, 75 =7, Js = . Then the overall system S (2.1) is totally stable
with respect to {to, J, C1(to), Ca(t), Cp(t)}, Vr € Cy if

(4.14) AB(tg,t) <V, 42(t) — Varp(to),Vt € J

provided that matrix A = (a;;) is determined by (4.8).

In some cases the composite system S is not disturbed by vector z, i.e.
(p(t) = @. Then it can be significant to analyze the (hg, h)-practical stability
of the system S with respect to {to, J, (1(to), Ca(t)}.

Corollary 4.2. Let hg,h € T' and let each subsystem S; (2.3) of the
composite system S be (h{, ht)-practically stable with respect to {to, J, Cri(to),
Cai(t)}, which is proved by using Theorem 3.1 for the case (p;(t) = Cai(t),
(p(t) = @, 7« = 7, Js = &. Then the overall system S (2.1) is (hg,h)-
practically stable with respect to {to, J, (i(to), Ca(t)}, Vr € Cy if (4.14) hold,
provided that matrix A = (a;;) is determined by (4.8).

Example 4.1. Composite system S of dimension n = 6 consists of three
second order (n; = 2,Vi = 1,2, 3) subsystems .S; described by

Z = At)x;, At) = ( _3'1@; v _3.1(12+ )~ )
System interactions r; are given by
it = g St )
) = e (0L o )
) = g (S e ),
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signp, |p| > 1
p, lpl <1 '

Let hi(t,x;) = hi(t,z;) = |z, i = 1,2,3. We want to test (ho,h)-
practical stability with the settling time 7, = (e% — 1) of composite system S
given above with respect to {0, J,(7(0),Ca(t), (r(t), @}, where J = [0,e* — 1),

Cri(0) = {(t,z) : hé(o ) < e}, Cai(t) = {(t, @) : W' (8 i) < (e/(141))},
C() HC( )z 7 CFZ ) {(t7xi) : hi(tvxi) < (1/(1+t))}7

where sat p = {

3
Dy ={(t,z;): (1/(1 +1t)) < hi(t,z;) < (e/(1+1))}, D= HDi.

Sign-indefinite function 9;(¢, 2;) = 2In(1 + t).||lz;|| € C*Y(D) is a can-
didate aggregate function of subsystems S;,Vi = 1,2,3. At first we determine
Vi (0) = (1,1, 1, l)T;Vma(t) =(2,2,2,2)",Vt € J.

Further, (r;(t) = (p4(t) is accepted so that V,,; 2(t) = 0, Vars(t) =
V_9(t), Vte J.

The last equation shows that all 9;(¢, z;) satisfy (2.5). Since

i(t,x;) = —(4.2/(1 4 1)), Vhi(t,z;) € Cay(t), YVt EJT

we can set ¢;(t) = —4(1+t)~t, Vi = 1,2,3. Therefore 6;(0, t) = —41In(1+¢),
O(0,t) = —4(1,1,1)7In(1 + 1), @(0715) < (LL,1)T = V4 2(t) — Var(0),
vt € J\Js, ©(0,t) < —(2,2,2)" < —(1,1,1)" =V,_,9(t) — V—( ), Vt € Js

(0,
which proves (Theorem 3.1) (h, h?)-practical stability with the settling time
7, = (e!/2—1) of each subsystem S; with respect to {0, J, (1;(0), Ci(t), Cri(t), D}
Further
grad ¥; = 2x;|z|| 72, Vi=1,2,3

and
1 1
(grad 191)T7‘1 < thl(t) - g[(pg(t) + ¢3(t)], V(t,z) € D,
. 1 1 1
(grad ¥2)" o < fggol(t) — Zcpg(t) — g@g(t), Y(t,x) € D,
1 1
(grad¥3)Trs < —g[gol (t) + @a2(t)] — Zcpg(t), Y(t,z) € D,
so that &1 = —3, &2 = &3 — 5, fa = —g &2 = —3, &3 = —f,
E51=Ep2=—%, &3=—1.
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Matrix A (4.8) is now obtained as

L[ 6 -1 -1
A== -1 6 -1
8\ -1 -1 6
so that
A 1
A0(0,t)=—5 | 1 |In(1+ it < | 1 | = V2,0t — V5r(0), vt € (J\Js),
1 1
1
AB(0,t) < — | 1 | =V, 2(t) — Vam(0), Yt € J;.
1

These results demonstrate that all conditions of Theorem 4.1 are satis-
fied. The composite system is (hg, h)-practically stable with the settling time
¢ = (€'/? — 1) with respect to {0, J, ¢;(0), Ca(t), Cr(t), @}

In the sequel all aggregate functions ¢;(t) are assumed to be sign-semidefi-
nite,

>0,Vi=1,2,...,k
(4.15) soi(t){So,v¢2k+1,k+2,...,s,VteJ}'

Functions ;(t) are supposed to obey

(416) le(t)' = [gi(pi(t)]l/27 Vi = L,2,...,s,
. 1, V=12, 0k
WHETC &= 1, Vi=k+1,k+2,...,5

In what follows we shall use a constant vector
(4.17) €= (e1,60,...,65)%.
Besides, we introduce a symmetric s x s matrix B = (b;;) with constant
elements b;; determined by
1 .
(418) bl] 26162]—1_ §(§Z]+€]l)? Vz,] = 172a"'787

where ;; are given by (4.2). With A(B) will be denoted the maximal eigen-
value of the matrix B. Using the previous notations we can state a criterion
for (hg, h)-practical stability with the settling time of composite systems on
product spaces.
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Theorem 4.2. Let hg,h € T' and let each subsystem S; (2.3) of compo-
site system S (2.1) be (hi, h')-practically stable with the settling time 5 with
respect to {to, J, Cri(to), Cai(t), Cri(t), @}, which is proved by using Theo-
rem 3.1, and let all functions ¢;(t) of the same theorem be sign-semidefinite
(4.15). Then the overall system S (2.1) is (hg, h)-practically stable with the
same settling time 74 with respect to {to, J, {i(t0),Ca(t),Cr(t),{p(t)},Vr € Cy
(4.2), (4.16) if the following hold:

A(B)eTO(to, t) < 0,,42(t) — V377(to), Vt € J\Js,

A(B)eTO(to, t) < 0,,.2(t) — O3r7(to), Vt € J;
provided the elements b;; of the matrix B are determined by (4.2) and (4.18),
where ¥ = > U;.

i=1
S
If we accept ¢(t) = A(B) Y ej;(t), then we easily prove Theorem 4.2 as
j=1

a consequence of Theorem 3.1. Theorem 4.2 can also be used to test other
(ho, h)-practical stability and (hg, h)-finite-time stability properties of compo-
site systems.

Example 4.2. Subsystems S;(n; = 2) are described by

L s, . (121 4
2, = (14 t)° Ay, Az< 0 161 )

System interactions are defined by

(L, 2) —2(1+t)*sat 0.1z11 + 0.5a(w11+222)
BN —2(1+t>4 sat 0.1x12 + 0.50[(.1‘12+.’1721) ’

ro(t,x) = 05<ggi§)

where non-linearities «(¢) and 3(¢) are depicted in Figure 1.

Let hi(t,z;) = h'(t,x;) = ||z;]|, i = 1,2. We want to test the (hg,h)-
practical stability with the settling time 75 = 2 of the composite system S
defined above with respect to tg = 0, 7 = 400, and the products (4.5) of sets

CIi(O) = {(tvxi) : h6<0’xi) < 2}’

Cailt) = () W) < T2,
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Figure 1. Non-linearities of Example 4.2

Function ¥;(t,x;) = ||z;]|, ¢ = 1,2, is chosen as a candidate aggregate
function of subsystem S;. Then we select (r;(t) = (ri(t), and find

ﬁi(ta m’i) < _2(1 + t) = (pz(t)v 01(07t) = _(2t + t2)a
Vi=1,2, Vh'(t,2;) € C4;(t), Yt € J,

Vi = (3) Va0 = 15 (1) V"0 =15 ():

So that and V,; 9(t) = V—=(¢) and

0(0,1) = — (2t +12) G) < 81%2; G) — Va2 (1) — Vi (0), Ve € I\,

1 1+2t2 (1

These results prove (Theorem 3.1) that subsystem S; is (hj, h')-practically
stable with the settling time 7= 2 with respect to {0, J, (1;(0), Ca;(t), (ri(t), T},
Vi=1,2.
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Further, we find and grad ¢; = ;2| =" and
(grad 91)Tr; < —0.193(t) + 0.5¢1 (t)=(t), V(t,z) € D,
(grad ¥2) o < 1 (t)¢ha(t), V(t,x) € D,
Vi(t) = 20+ 1)]Y2, Vi=1,2; &1 = —0.1, £15=0.5, &1 =1, &5 = 0.

Matrix B (4.18) is now obtained as

~1.1 075
B_< 07s ) A(B) = —0.59.

Vector ¢ is given by ¢ = (=1, —1)T so that
A(B)eTO(0,t) = —1.18(2t + t?)

and

22 =0,,,°() — I377(0), ¥t € J\J,

A(B)ETO(0,t) <

2
~204200 —y,,,2(t) — O57(0), Vi €

2
where ¢ = Y 9;.
i=1

All conditions of Theorem 4.2 are satisfied and we may conclude that the
composite system S is (ho, h)-practically stable with the settling time 74 = 2
with respect to {0, J, (;(0), Ca(t), Cr(t), T}

In some cases conditions (4.16) can be restrictive. In order to relax con-
ditions imposed of the system we shall present another criterion for its (hg, h)-
practical stability with the settling time. Let

s
_ T C . R
- ) 1ty S ) 17 bt ]
(4.19) c=(e1,co Cs) cj—gaj Vi=1,2 s
i=1

where are determined by (4.8).

Theorem 4.3. Let ho,h € I and let each subsystem S; (2.3) of the large-
scale system S (2.1) be (h, h)-practically stable with the settling time 75 with
respect to {to, J, Cri(to), Cai(t), Cri(t), @}, which is proved by using Theo-
rem 3.1. Then the overall system S (2.1) is (ho, h)-practically stable with
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the same settling time 7, with respect to {to, J, (1(to), Ca(t), Cr(t), Cp(t)},
vr e Cy, if
cTO(tg,t) < 0,,4°(t) — V57(to), Yt € J\Js,

O (to,t) < V,,.2(t) — V377(to), Yt € J,
where vector c is determined by (4.19) and ¥ = > 9;.
i=1
Theorem 4.3 is easily verified by referring to Theorem 3.1.
Example 4.3. System S is composed of three subsystems .S; described
by

—18(1+1¢) 2sint

and interactions

mtz) = 1+t 211 2z
A 4 T2 x31 )
0.1 T31
nta) = (0,
o 1 T11 T21
ra(tz) = 40 ( Ti2 Tz )

Let hi(t,x;) = hi(t,z;) = ||x;||. We want to test the (ho,h)-practical
stability with the settling time 7, = 9 of the composite systems S if ¢ty = 0,
T = +00,

Cri(0) = {(t, ;) : h¥(0,2;) < 10},
CAi(t) = {(t,xi) : hi(t,l‘i) < ﬁ},
Grilt) = (k) W) < )
and 1 10
Dl = {(t,xz) (1 + t)2 < hi(t,mi) S m}
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At first we test the same stability property of all subsystems. Function
Vi(t, ;) = In(1 + t)?||z;| is proposed as a candidate aggregate function for
subsystems S;. We can choose (r;(t) = (r;(t). It is found

Voa(0) =10, 9,47 =10, 9,,,,°(t) = V5 (t) = 0

and
it x;) < i(t), @i(t) = —16(141)7*

for each (t,z;) for which hi(t,z;) € Ca;(t), Vt € J, which implies 0;(0,t) =
—161In(1 + ¢). With this result we can test the (h{, h?)-practical stability with
the settling time 7, = 9 of all subsystems. It is obtained

0= ﬁimAia(t) — Vi (0), VE € J\J;
0;(0,1) = —161In(1+t) <

—In10 = 9,,,,,°(t) — ¥377:(0), Vt € J,,Vi=1,2,3.

Applying Theorem 3.1, all conditions of which are satisfied, we conclude
that each subsystem S;, i = 1,2, 3, is (h}), h?)-practically stable with the settling
time 75 = 9 with respect to {0, J, (1;(0), Cai(t), (ri(t), @}. To test the (hg, h)-
stability property of the overall system we find

grad ¥; = x; HQCZH_2

. 5 5
< _ 2 _ 2

(grad¥1)" 1 < 32<p2(t) 32<p3(t),V(t,x) e D,
5 5

(gradﬁg)Trg < —ﬁgol(t) - ﬁcpg(t),V(t,z) eD,
5 5

(gradﬁg)Trg < 73—2901(15) — 3—2<p2(t),V(t,:v) e D.

Elements a;; (4.8) of the matrix A are easily calculated as follows:

U ISP N I
11— 4 12_327 13 — 327 21 — 327
1 ) ) ) 1
Aoy = Aor = ——. Q31 == ——. Q2o — ——. Qa2 = 1.
22 , 023 32 , (31 32 , W32 32 , U433

Vector ¢ (4.19) is given by

11
c=—

1,1, DT,
16(7’)

115



Ivan K. Russinov

Since

c'0(0,t) = —33In(1 +1) <0, Vt € J,
9, a?(t) =310, Vt € J, 9;7°(0) =3In10 and 9,,.°(t) =0, Vte J

we can easily verify all conditions of Theorem 4.3,

0= 7‘9mAa (t) - ﬁm(o)a vt € J\JS

T9(0,t) = —33In(1 +¢t) < )
60,9 1+ < ~31n10 = 9, ,2() — 0577(0), Vt € J,,

3
where ¢ = Y 9;.
i=1
These results prove that the system S is (hg, h)-practically stable with the

settling time 75 = 9 with respect to {0, J, {;(0), Ca(t), Cr(t), o}

5. Conclusions

Algebraic criteria have been developed for various types of (hg, h)-practical
stability and (hg, h)-finite-time stability of large-scale systems on product spaces.
To apply the conditions it is necessary to prove (h), ht)-practical stability or
(hi, h')-finite-time stability of all subsystems and to use information about
interactions. Such an aggregate-decomposition approach has resulted in the
reduction of the dimension of the system aggregate matrix to the number of
subsystems. Furthermore, no restriction is imposed on either system dimen-
sionality or its structure.

The stability analysis in terms of two multi-valued measures has been
carried out on products of time-varying sets, which provides information about
the trajectory bounds and the settling time of the overall system.
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AHAJIN3 HA HEJIAIIYHOBA YCTONYMBOCT HA
CHUCTEMU C I'OJIAMA PASMEPHOCT CIIPAMO
MHO2KECTBA, SABUCEITIIN OT BPEMETO, 11O
OTHOIITEHVE HA JIBE MHOT'OMEPHU MEPKIU

NBan K. PycunoB

Pestome. Tlpencrasa ce anmamu3 Ha HeasamyHoBa (hg, h)-ycroiumBocT Ha
HeJIMHeflHH CHCTeMHU C rojigMa Pa3MepHOCT OT IPOU3BOJIEH Pel U CIPYKTYpa,
KOHTO 3aBHCAT OT BPEMeTO. B cTaTusATa ca MOJyYeHH aIreOpUYHU YCIOBHSA 33
Pa3JIMYHI BUIOBE IPAKTHYICCKS, YCTORUIMBOCT U YCTOHUUBOCT Ha KPACH HHTEPBAI
HA CHCTEMH 110 OTHONICHHE Ha, JIBe MHOroMepHH Mepku. CBoficTBaTa Ha, yCTONIH-
BOCTTa Ce M3CJIeIBAT CIPAMO MHOTOMEPHH MHOKECTBA, 3aBHUCEIIH OT BPEMETO.
YenoBugra OCHrypsABaT JaJeHO CBOMCTBO 3a YCTONYMBOCT Ha HAIATA CHCTEMA
JIa CIeBa OT ChOTBETHOTO CBOMCTBO 34 YCTONYMBOCT Ha BCUYKH TTOJCACTEMH.

ITpuI0KEHHETO Ha TMOIXOA Ha ArPErHPAHE U TEKOMIIO3UPAHE KbM AHAIHA3A,
Ha yCTOMYHMBOCTTA HAMAJIABA, PA3MEPHOCTTA, Ha ArPErHPAHATa, MATPHUIA HA IIf-
JlaTa cUCTeMa /10 Opod Ha, HOJICHCTEMHATE.
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