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1. Introduction and Preliminaries

The classical Banach contraction theorem has a lot of applications [1]. One of
the interesting generalizations of Banach contraction is the well known Meir -
Keeler contraction theorem [12]. In [3], the following notions are introduced.If A
and B are non empty subsets of a metric space (X, d), and if T : A∪B → A∪B
is such that T (A) ⊆ T (B) and T (B) ⊆ T (A), then T is called a cyclic map. A
point x ∈ A∪B is called a best proximity point if d(x, Tx) = dist(A,B), where
dist(A,B) = inf{d(x, y) : x ∈ A and y ∈ B}. In this paper a best proximity
point is obtained for a map called cyclic contraction. It is further generalized
in [2] by introducing a map called cyclic Meir Keeler contraction.
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If (X, d) is a metric space, A1, A2, ..., Ap (p ≥ 2) are non empty subsets of
X and T : ∪p

i=1Ai → ∪p
i=1Ai, then T is called a p–cyclic map if T (Ai) ⊆ Ai+1,

where we use the notation Ap+1 = A1 [9]. Results about best proximity points
are obtained for p–cyclic contractions in [9], which is a generalization of cyclic
contractions introduced in [3]. The results of [2] were generalized in [7] by
introducing a map called p–cyclic Meir- Keeler contractions. Further these
results are generalized in a new direction in [8] by introducing a map called
cyclic orbital Meir-Keeler contraction. Further development of the cyclic orbital
type of maps was investigated in [4], [5], [6]. The introduction of orbital type
of cyclic maps eases a lot the verifications of the conditions that ensure the
existence and uniqueness of best proximity points. We will illustrate this in the
final section with an example.

The conditions of the p-cyclic contractions [9], p-cyclic Meir-Keeler con-
tractions [7], p-cyclic orbital Meir-Keeler contractions [10] and weak p–cyclic
Kannan contractions [15] are such that the distances between the adjacent sets
need to be equal. This condition on the sets is relaxed in the p–summing maps
introduced in [14] and further developed in [18].

We will use the convention Ap+j = Aj for j = 1, 2, . . . p. Let us denote by
P =

∑p
j=1 dist(Aj , Aj+1),

sp(x1, x2, ..., xp) =

p−1
∑

j=1

d(xj , xj+1) + d(xp, x1),

where if x1 ∈ Ai then x1+k ∈ Ai+k for every k = 1, 2, ..., p − 1. From the
definition of sp it is easy to see that for any xnj

∈ Ai+j−1, j = 1, 2, . . . , p there
holds the equality

sp(xn1
, xn2

, . . . , xnp
) = sp(xnp

, xn1
, xn2

, . . . , xnp−1
)

= sp(xnp−1
, xnp

, xn1
, xn2

, . . . , xnp−2
)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
= sp(xn2

, xn3
, . . . , xnp

, x1).

(1)

Two conditions (P.1) and (P.2) were imposed on the investigated maps in
[18].

Definition 1. ([18]) Let Ai, i = 1, 2 . . . , p be subsets of a metric space
(X, ρ) and T :

⋃p
i=1Ai →

⋃p
i=1 Ai be a cyclic map. The map T is called a

p–summing cyclic orbital Meir–Keeler contraction if there exists x ∈ A1 with
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the properties

for every ε > 0 there exists δ > 0 such that
if there holds the inequality

sp(T
pn−1x, y1, y2, . . . , yp−1) < P + ε+ δ

for n ∈ N and yi ∈ Ai, i = 1, 2 . . . , p − 1,
then there holds the inequality

sp(T
pnx, Ty1, T y2, . . . , T yp−1) < P + ε.

(P.1)

and
for every ε > 0 there exists δ > 0 such that

if there holds the inequality
sp(T

pnx, y2, y3, . . . , yp) < P + ε+ δ
for n ∈ N and yi ∈ Ai, i = 2, 3 . . . , p,

then there holds the inequality
sp(T

pn+1x, Ty2, T y3, . . . , T yp) < P + ε.

(P.2)

We have weaken condition (P1) and removed condition (P2) in the main
result for existence and uniqueness of best proximity points. This not only
increase the set of the Meir-Keeler type maps that have best proximity points
but help us to verify easier the sufficient condition and therefore we were able
to present an example with integral operators.

Deep results, that characterize the Meir–Keeler maps are obtained by in-
troducing the notion of L–functions [11].

Definition 2. ([11]) A function φ : [0,∞) → [0,∞) is called an L -
function if φ(0) = 0, φ(s) > 0 for s ∈ (0,∞) and for every s ∈ (0,∞) there
exists a δ > 0 such that φ(t) ≤ s for every t ∈ [s, s+ δ].

Lim also gave a set of equivalent conditions for L - functions [11]. Suzuki
generalize Lim’s results [17]. We will need the following lemma for the proof of
the main results.

Lemma 1. ([17]) Let Y be a non empty set and let f, g : Y → [0,∞).
Then the following are equivalent:

(i) For each ǫ > 0 there exists a δ > 0 such that f(x) < ǫ+ δ ⇒ g(x) < ǫ.

(ii) There exists an L - function φ (which may chosen to be a non decreasing
and continuous) such that f(x) > 0 ⇒ g(x) < φ(f(x)), x ∈ Y and
f(x) = 0 ⇒ g(x) = 0, x ∈ Y .

The next two lemmas are crucial in the investigation of best proximity
points in uniformly convex Banach spaces.
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Lemma 2. ([3]) Let A be a nonempty closed and convex subset and B
be a nonempty closed subset of a uniformly convex Banach space. Let {xn}

∞
n=1

and {zn}
∞
n=1 be sequences in A and {yn}

∞
n=1 be a sequence in B satisfying:

(i) lim
n→∞

‖zn − yn‖ = dist(A,B);

(ii) for every ε > 0 there exists N0 ∈ N, such that for all m > n ≥ N0 there
holds the inequality ‖xm − yn‖ ≤ dist(A,B) + ε.

Then for every ε > 0 there exists N1 ∈ N, such that for all m > n > N1, there
holds the inequality ‖xm − zn‖ ≤ ε.

Lemma 3. ([3]) Let A be a nonempty closed and convex subset and B
be a nonempty closed subset of a uniformly convex Banach space. Let {xn}

∞
n=1

and {zn}
∞
n=1 be sequences in A and {yn}

∞
n=1 be a sequence in B satisfying:

(i) lim
n→∞

‖xn − yn‖ = dist(A,B);

(ii) lim
n→∞

‖zn − yn‖ = dist(A,B).

Then lim
n→∞

‖xn − zn‖ = 0.

Lemma 4. ([18] Let A, B be closed subsets of a strictly convex Banach
space (X, ‖ · ‖), such that dist(A,B) > 0 and let A be convex. If x, z ∈ A and
y ∈ B be such that ‖x− y‖ = ‖z − y‖ = dist(A,B), then x = z.

2. Main Result

We will start with some notations, which we will introduce just to fit some of
the formulas in the text field.

Let (X, d) be a metric space and (X, ‖ · ‖) be a Banach space. For a
Banach space (X, ‖ · ‖) we will always consider the metric d, endowed by
the norm, i.e. d(x, y) = ‖x − y‖. Let A1, A2, ..., Ap be non empty sub-
sets of a metric space (X, d). We will use the convention Ap+j = Aj for
j = 1, 2, . . . p. Just to fit some of the formulas in the text field let us de-
note sp,n,i,k(x, y) = sp(T

pn−ix, T pn−i+1x, . . . ,
T pn−i+k−1x, T k−iy, T k−i+1y, ..., T p−i−1y) for x, y, which belong to one and the
same set Aj, j = 1, 2, . . . , p and k = 1, 2, . . . , p − 1.

We will write explicitly sp,n,i,k(x, y) for i = 0, 1 and k = 1, 2, 3 just to make
clearer the above notation.

sp,n,1,1(x, y) = ρ(T pn−1x, y) + ρ(y, Ty) + · · ·+ ρ(T p−3y, T p−2y)
+ρ(T p−2y, T pn−1x),



A NOTE ON BEST PROXIMITY POINTS FOR... 229

sp,n,0,1(x, y) = ρ(T pnx, Ty) + ρ(Ty, T 2y) + · · ·
+ρ(T p−2y, T p−1y) + ρ(T p−1y, T pnx),

sp,n,1,2(x, y) = ρ(T pn−1x, T pnx) + ρ(T pnx, Ty) + ρ(Ty, T 2y)
+ · · ·+ ρ(T p−3y, T p−2y) + ρ(T p−2y, T pn−1x),

sp,n,0,2(x, y) = ρ(T pnx, T pn+1x) + ρ(T pn+1x, T 2y)
+ρ(T 2y, T 3y) + · · ·+ ρ(T p−2y, T p−1y)
+ρ(T p−1y, T pnx),

sp,n,1,3(x, y) = ρ(T pn−1x, T pnx) + ρ(T pnx, T pn+1x)
+ρ(T pn+1x, T 2y) + ρ(T 2y, T 3y) + · · ·
+ρ(T p−3y, T p−2y) + ρ(T p−2y, T pn−1x),

sp,n,0,3(x, y) = ρ(T pnx, T pn+1x) + ρ(T pn+1x, T pn+2x)
+ρ(T pn+2x, T 3y) + ρ(T 3y, T 4y) + · · ·
+ρ(T p−2y, T p−1y) + ρ(T p−1y, T pnx),

Definition 3. Let A1, A2, ..., Ap be non empty subsets of a metric space
(X, d). Let T : ∪p

i=1Ai → ∪p
i=1Ai be a p-cyclic map. The map T is called a

p–summing cyclic orbital Meir-Keeler contraction of type 2 with a constant D
if there exists x ∈ A1 with the property for every ε > 0 there is δ > 0, such
that for all k = 1, 2, . . . p− 1 and all y ∈ A1 there holds

if sp,n,1,k(x, y) < D + ε+ δ for n ∈ N and y ∈ A1

then there holds the inequality sp,n,0,k(x, y) < D + ε
(1)

We call these maps of type 2, because they are different from the maps
introduced in [18].

Theorem 4. Let Ai, i = 1, 2, . . . , p be nonempty closed subsets of a
complete metric space (X, ρ). Let T be a p–summing cyclic orbital Meir-Keeler
contraction of type 2 with a constant D = 0. Then there exists a unique
ξ ∈

⋂p
i=1Ai, such that:

(a) Tξ = ξ;

(b) for any x ∈ A1, that satisfies (1) there holds lim
n→∞

T pnx = ξ.

Theorem 5. Let A1, A2, ..., Ap be non empty closed and convex subsets
of a uniformly convex Banach space (X, ‖.‖) . Let T : ∪p

i=1Ai → ∪p
i=1Ai be a

p–summing cyclic orbital Meir-Keeler contraction of type 2 with a constant D
equal to P or to zero. Then there exists a unique point, say ξ ∈ A1, such that:

(a) for every x ∈ A1 satisfying (1), the sequence {T pnx} converges to ξ;
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(b) ξ is a best proximity point of T in A1 and T jξ is a best proximity point of
T in A1+j ;

(c) ξ is a fixed point for the map T p : A1 → A1.

3. Auxiliary Results

Lemma 5. Let (X, d) be a complete metric space. Let Ai, i = 1,...,p be
non empty subsets of X. Let T : ∪p

i=1Ai → ∪p
i=1Ai be a p–summing cyclic

orbital Meir-Keeler contraction of type 2 with a constant D equal either to P
or to zero. Then

(i) the inequality sp,n,0,k(x, y) ≤ sp,n,1,k(x, y) holds for x ∈ A1, which satisfies
(1), n ∈ N and y ∈ A1;

(ii) sp(T
jx, T j+1x, . . . , T j+p−1x) ≤ sp(T

j−1x, T jx, . . . , T j+p−2x);

(iii) lim
n→∞

sp(T
nx, T n+1x, . . . , T n+p−1x) = P for x ∈ A1 satisfying (1).

Proof. I) Let us consider the case D = P .
(i) Let x ∈ A1 satisfy (1). Define the following sets: Cj = {T pn−1+jx : n ∈

N} for j = 0, 1, . . . , p − 2 and Bk = {T k−1y : y ∈ A1}, for k = 1, . . . , p − 1.
Define

fk, gk : C0 ×C1 × · · · × Ck−1 ×Bk ×Bk+1 × · · · ×Bp−1 → [0,∞)

as follows: fk(x, y) = sp,n,1,k(x, y) − P and gk(x, y) = sp,n,0,k(x, y)− P .
We will write explicitly fk for k = 1, 2, 3 just to make clearer the above

definition
f1 : C0 ×B1 ×B2 × · · · ×Bp−1 → [0,∞),

f2 : C0 × C1 ×B2 ×B3 × · · · ×Bp−1 → [0,∞),

f3 : C0 × C1 × C2 ×B3 ×B4 × · · · ×Bp−1 → [0,∞).

Then fk and gk satisfy the condition (1) of Lemma 3. Hence there exists
an L function φk such that

sp,n,0,k(x, y)− P < φk(sp,n,1,k(x, y)− P ), if sp,n,1,k(x, y) > P

and
sp,n,0,k(x, y)− P = φk(sp,n,1,k(x, y)− P ), ifsp,n,1,k(x, y) = P.
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From the definition of the L function, it follows that

sp,n,0,k(x, y) < sp,n,1,k(x, y) when sp,n,0,k(x, y) > 0 (2)

sp,n,0,k(x, y) = sp,n,1,k(x, y) when sp,n,1,k(x, y) = 0, (3)

for all n ∈ N, all y ∈ Ai and all k = 0, 1, 2, . . . p− 1. Therefore (i) is proved.

(ii). For any j ∈ N there exists k = 0, 1, . . . , p−1, so that j+k = pn. Then
using (1) and (i) we get the chain of inequlities

rj = sp(T
jx, T j+1x, . . . , T j+k−1x, T j+kx, T j+k+1x, . . . , T j+p−1x)

= sp(T
j+kx, T j+k+1x, . . . , T j+p−1x, T jx, T j+1x, . . . , T j+k−1x)

= sp(T
pnx, T pn+1x, . . . , T pn−k+p−1x, T pn−kx, . . . , T pn−1x)

= sp,n,0,k(x, T
pnx) ≤ sp,n,1,k(x, T

pnx)
= sp(T

pn−1x, T pnx, . . . , T pn−k+p−2x, T pn−k−1x, . . . , T pn−2x)
= sp(T

j+k−1x, T j+kx, . . . , T j+p−2x, T j−1x, T jx, . . . , T j+k−2x)
= sp(T

j−1x, T jx, . . . , T j+k−2x, T j+k−1x, T j+kx, . . . , T j+p−2x)
= rj−1.

(iii) Put rn = sp(T
nx, T n+1x, . . . , T n+p−1x), then rn ≥ P . It follows from (ii)

that the sequence {rn}
∞
n=1 is a nonincreasing sequence. Hence lim

n→∞
rn = r ≥ P .

We claim that r = P . Let us suppose the contrary, i.e. r > P . Put
ε0 = r − P > 0. There exists δ > 0 such that the inequality rn < P + ε0 holds
whenever

rn−1 < P + ε0 + δ. (4)

By lim
n→∞

rn = r it follow that there is n0 ∈ N, such that for any n ≥ n0 there

holds the inequalities r ≤ rn < r + δ = ε0 + P + δ. Therefore (4) holds for
n − 1 ≥ n0. Thus by the assumption that T is a p–summing cyclic orbital
Meir–Keeler contraction of type 2 the inequality rn < P + ε0 = r holds for
every n ≥ n0, which is a contradiction. Consequently r = P .

II) The case D = 0 is proven in a similar fashion.

Corollary 6. Let Ai, i = 1, 2, . . . , p be nonempty closed subsets of a
metric space (X, ρ) and T be a p–summing cyclic orbital Meir–Keeler con-
traction of type 2 with a constant D equal either to P of to zero. Then for
any x ∈ A1 that satisfies (1) and for any j = 0, 1, 2, . . . , p − 1 there hold
lim
n→∞

ρ(T pn+jx, T pn+j+1x) = dist(Aj+1, Aj+2) and lim
n→∞

ρ(T pn+p+jx, T pn+j+1x) =

dist(Aj+1, Aj+2).
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Lemma 6. Let (X, d) be a complete metric space. Let Ai, i = 1,...,p be
non empty subsets of X. Let T : ∪p

i=1Ai → ∪p
i=1Ai be a p-cyclic map, which is

a p–summing cyclic orbital Meir-Keeler contraction of type 2 with a constant
D = 0. Then for any x ∈ A1 that satisfies (1) and for any ε > 0

(i) there exists N0 ∈ N such that for any m ≥ n ≥ N0 there holds

sp(T
pnx, T pm+1x, T pm+2x, . . . , T pm+p−1x) < ε; (5)

(ii) there is N1 ∈ N so that the inequalities

ρ(T pnx, T pm+1x) < ε and ρ(T pm+p−1x, T pnx) < ε

holds for any m ≥ n ≥ N1.

Proof. (i) We will prove Lemma 6 by induction on m.
Let ε > 0 be arbitrary. There exists δ > 0, such that condition (1) holds

true.
By Lemma 5 there exists N1 ∈ N such that there holds the inequality

sp(T
pnx, . . . , T pn+jx, . . . , T pn+p−1x) < ε

for every n ≥ N1. From Corollary 6 there exists N2 ∈ N, such that for every
n ≥ N2 there hold ρ(T pn+j−2x, T pn+j−1x) < δ

2p for j = 1, 2, . . . , p. Put N0 =
max{N1, N2}.

Inequality (5) is true for m = n ≥ N0.
Let (5) holds true for some m ≥ n.
We will prove that (5) holds true for m+ 1.
Put S1 = sp(T

pn−1x, T p(m+1)x, T p(m+1)+1x, . . . , T p(m+1)+p−2x).
By Lemma 5 and the inductive assumption we obtain the inequalities

S1 = sp(T
pn−1x, T p(m+1)x, T p(m+1)+1x, . . . , T p(m+1)+p+1x)

≤ sp(T
p(n+1)−1x, T p(m+1)x, . . . , T p(m+1)+p−2)

+2ρ(T pn−1x, T p(n+1)−1x)

≤ sp(T
p(n+1)−1x, T p(m+1)x, . . . , T p(m+1)+p−2)

+2
∑p

j=1 ρ(T
pn+j−2x, T pn+j−1x)

≤ sp(T
pnx, T pm+1x, . . . , T pm+p−1)

+2
∑p

j=1 ρ(T
pn+j−2x, T pn+j−1x)

< ε+ 2p δ
2p = ε+ δ.

(6)

The map T is a p–summing cyclic orbital Meir–Keeler contraction of type 2
with D = 0 and from the choice of x ∈ A1, δ > 0 and (6) it follows that

sp(T
pnx, T p(m+1)+1x, . . . , T p(m+1)+p−1x) < ε.

(ii) The proof follows directly from (i).
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Lemma 7. Let Ai, i = 1, 2, . . . , p be nonempty closed subsets of a uni-
formly convex Banach space (X, ‖ · ‖). Let T be a p–summing cyclic orbital
Meir–Keeler contraction of type 2 with a constant D = P . Then for every
x ∈ A1, satisfying (1) there hold:

(i) lim
n→∞

‖T pn+jx− T p(n+1)+jx‖ = 0 for every j = 0, 1, . . . , p− 1;

(ii) for any ε > 0 there exists N0 ∈ N such that for any m ≥ n ≥ N0 there
holds the inequality

sp(T
pnx, T pm+1x, T pm+2x, . . . , T pm+p−1x) < P + ε; (7)

(iii) for any ε > 0 there exists N1 ∈ N such that ρ(T pnx, T pm+1x) < ε and
ρ(T pm+p−1x, T pnx) < ε hold for any m ≥ n ≥ N1.

Proof. (i) By Corollary 6 for any j = 0, 1, . . . , p − 1 it follows that

lim
n→∞

‖T pn+jx− T pn+j+1x‖ = dist(Aj+1, Aj+2)

and

lim
n→∞

‖T pn+p+jx− T pn+j+1x‖ = dist(Aj+1, Aj+2).

According to Lemma 3 it follows lim
n→∞

‖T pn+jx− T p(n+1)+jx‖ = 0.

(ii) We will prove by induction on m.

Let ε > 0 be arbitrary. There exists δ > 0, such that condition (1) holds
true.

By Lemma 5 there exists N1 ∈ N such that there holds the inequality

sp(T
pnx, . . . , T pn+jx, . . . , T pn+p−1x) < P + ε

for every n ≥ N1. By (i) there exists N2 ∈ N such that there hold the inequali-
ties ‖T pn−px− T pnx‖ < δ/2 for every n ≥ N2. Put N0 = max{N1, N2}.

Inequality (7) is true for m = n ≥ N0.

Let (7) holds true for some m ≥ n.

We will prove that (7) holds true for m+ 1.

Let us put S2 = sp(T
pn−px, T pm+1x, T pm+2x, . . . , T pm+p−1x). It is easy to
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observe that

S2 = ‖T pn−px− T pm+1x‖+

pm+p−2
∑

j=pm+1

‖T jx− T j+1x‖

+‖T pm+p−1x− T pn−px‖
≤ ‖T pn−px− T pnx‖+ ‖T pnx− T pm+1x‖

+

pm+p−2
∑

j=pm+1

‖T jx− T j+1x‖

+‖T pm+p−1x− T pnx‖+ ‖T pn−px− T pnx‖
= sp(T

pnx, T pm+1x, T pm+2x, . . . , T pm+p−1x)
+2‖T pn−px− T pnx‖.

Consequently for any n ≥ N0 there holds S2 ≤ P + ε+ δ. From (1) we get the
inequality

S2 = sp(T
pn−px, T pm+1x, T pm+2x, . . . , T pm+p−1x)

= sp(T
pm+p−1x, T pn−px, T pm+1x, T pm+2x, . . . , T pm+p−2x)

≤ P + ε+ δ.

Therefore from (1) it follows that

sp(T
pm+px, T pn−p+1x, T p(m+1)−p+2x, . . . , T p(m+1)−1x) < P + ε.

Thus we get

sp(T
pn−p+1x, T p(m+1)−p+2x, T p(m+1)−p+3x, . . . , T p(m+1)x) < P + ε.

Put S3 = sp(T
pnx, T p(m+1)+1x, T p(m+1)+2x, . . . , T p(m+1)+p−1x) and

S4 = sp(T
pn−p+1x, T p(m+1)−p+2x, T p(m+1)−p+3x, . . . , T p(m+1)x).

From Lemma 5 we get the inequalities S2 ≤ S4 < P + ε.
(iii) The proof follows from (ii).

4. Proof of Main Result

Proof. (of Theorem 4) (a) Let x ∈ A1 satisfies (1). We claim that for any
ε > 0 there exists N0 ∈ N, such that the inequality ρ(T pmx, T pnx) < ε holds
for any m ≥ n ≥ N0.

For any ε > 0 by Lemma 6 there is N0 ∈ N such that there holds the
inequality

max{ρ(T pnx, T pm+1x), ρ(T pm+1x, T pmx)} < ε/2
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for every m ≥ n ≥ N0. Thus by the inequalities

ρ(T pnx, T pmx) ≤ ρ(T pnx, T pm+1x) + ρ(T pm+1x, T pmx) < ε

it follows that the sequence {T pnx}∞n=1 is a Cauchy sequences and therefore by
the completeness of the space (X, ρ) it follows that there exists ξ ∈ X such that
lim
n→∞

T pnx = ξ.

By the inequality ρ(T pn+1x, ξ) ≤ ρ(T pn+1x, T pnx)+ ρ(T pnx, ξ) and Lemma
6 it follows that

lim
n→∞

T pn+1x = ξ. (8)

From the inequality ρ(T pn+2x, ξ) ≤ ρ(T pn+2x, T pn+1x) + ρ(T pn+1x, ξ), (9) and
Lemma 6 it follows that

lim
n→∞

T pn+2x = lim
n→∞

T pnx = lim
n→∞

T pn+1x = ξ. (9)

We can obtain in a similar fashion the equalities

lim
n→∞

T pn+jx = lim
n→∞

T pnx = ξ

holds for every j = 0, 1, 2, . . . , p − 1. Since Ai, i = 1, 2, . . . p are closed sets
we obtain that ξ ∈ Ai for every i = 1, 2, . . . , p. Consequently we get that
ξ ∈

⋂p
i=1Ai.

We will prove that Tξ = ξ. We apply (5) and the continuity if the function
ρ(·, y) in the next chain of inequalities

ρ(ξ, T ξ) ≤ sp(ξ, T ξ, T
2ξ, . . . , T p−1ξ)

= lim
n→∞

sp(T
pnx, T ξ, T 2ξ, . . . , T p−1ξ)

≤ lim
n→∞

sp(T
pn−1x, ξ, T ξ, . . . , T p−2ξ)

= lim
n→∞

sp(T
pn−1x, T pnx, T ξ, . . . , T p−2ξ)

≤ lim
n→∞

sp(T
pn−2x, T pn−1x, ξ, T ξ, . . . , T p−3ξ).

By applying the above procedure p–times and Lemma 5 we get

ρ(ξ, T ξ) ≤ sp(ξ, T ξ, T
2ξ, . . . , T p−1ξ)

≤ lim
n→∞

sp(T
p(n−1)x, T p(n−1)+1x, . . . , T p(n−1)+(p−1)x)

= 0.

Thus ξ is a fixed point for the map T .
(b) It remains to prove that ξ is unique.
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Suppose that there exists z ∈ A1, z 6= x, which satisfies (1). Then by
what we have just proved it follows that {T pnz}∞n=1 converges to some point
η ∈

⋂p
i=1 Ai, such that Tη = η. Since D = 0 it follows that

lim
n→∞

sp(T
pnz, T pn+1x, T pn+2x, . . . , T pn+p−1x) = 0.

From the continuity of the function ρ(·, ·) and Lemma 5 we get

ρ(η, ξ) = lim
n→∞

ρ(T pnz, T pn+1x)

≤ lim
n→∞

sp(T
pnz, T pn+1x, T pn+2x, . . . , T pn+p−1x) = 0.

Hence ξ = η.

Proof. (of Theorem 5) Let x ∈ A1 satisfies (1).

Case I) Let D = 0. From Theorem 4 there exists a unique fixed point of T ,
which is a best proximity point.

Case II) (a) Let D = P > 0. We will prove that the sequence {T pnx}∞n=1

is a Cauchy sequence. By Corollary 6 we have that lim
m→∞

‖T pmx− T pm+1x‖ =

dist(A1, A2). From Lemma 7 we have that for any ε > 0 there exists N1 ∈ N,
such that there holds the inequality

sp(T
pnx, T pm+1x, T pm+2x, . . . , T pm+p−1x) < P + ε/2

for every m ≥ n ≥ N1. Thus ‖T pnx − T pm+1x‖ ≤ dist(A1, A2) + ε/2 holds
for every m ≥ n ≥ N1. According to Lemma 2 it follows that for any ε > 0
there exists N2 ∈ N, such that for any m ≥ n ≥ N2 there holds the inequality
‖T pnx − T pmx‖ ≤ ε/2 < ε and thus {T pnx}∞n=1 is a Cauchy sequence. Hence
the sequence {T pnx}∞n=1 is convergent to some ξ ∈ A1.

(b) By Lemma 5 and the continuity of the function ‖ · ‖ we can write the
chain of inequalities

P ≤ sp(ξ, T ξ, T
2ξ, . . . , T p−1ξ)

= lim
n→∞

sp(T
pnx, T ξ, T 2ξ, . . . , T p−1ξ)

≤ lim
n→∞

sp(T
pn−1x, ξ, T ξ, . . . , T p−2ξ)

= lim
n→∞

sp(T
pn−1x, T pnx, T ξ, . . . , T p−2ξ)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

≤ lim
n→∞

sp(T
pn−px, T pn−p+1x, T pn−p+2x, . . . , T pn−1x)

= P.

(10)
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Form (10) we get that ‖ξ − Tξ‖ = dist(A1, A2), ‖ξ − T p−1ξ‖ = dist(A1, Ap),
‖T jξ−T j+1ξ‖ = dist(Aj+1, Aj+2), j = 1, 2, . . . p−2. Thus ξ is a best proximity
point of T in A1, T

jξ, j = 1, 2, . . . p− 1 is a best proximity point of T in Aj+1.

It remains to show that the point ξ from (a) and (b) is unique. We will show
that for any z ∈ A1, z 6= x, such that z satisfies (1) there holds lim

n→∞
T pnz = ξ.

By what we have just proved {T pnz} converges to a best proximity point, say
η ∈ A1, of T in A1. From Lemma 5

lim
n→∞

sp(T
pn−px, T pn−p+1z, T pn−p+2z, . . . , T pn−1z) = P. (11)

By Lemma 5, the continuity of the function ‖ · ‖ and (11) we get

P ≤ sp(ξ, Tη, T
2η, . . . , T p−1η)

= lim
n→∞

sp(T
pnx, Tη, T 2η, . . . , T p−1η)

≤ lim
n→∞

sp(T
pn−1x, η, Tη, . . . , T p−2η)

= lim
n→∞

sp(T
pn−1x, T pnz, Tη, . . . , T p−2η)

≤ lim
n→∞

sp(T
pn−2x, T pn−1z, η, Tη, . . . , T p−3η)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
≤ lim

n→∞
sp(T

pn−px, T pn−p+1z, T pn−p+2z, . . . , T pn−1z) = P.

Therefore we get that ‖ξ − Tη‖ = ‖ξ − Tξ‖ = dist(A1, A2). Since A2 is convex
set in a uniformly convex Banach space it follows that Tη = Tξ. By the fact
that η is a best proximity point of T in A1 there hold the equalities ‖η−Tη‖ =
‖η − Tξ‖ = dist(A1, A2) = ‖ξ − Tξ‖. Since A1 a convex set in a uniformly
convex Banach space and Tη = Tξ it follows that η = ξ.

(c) From the inequality ‖T pn+1x− ξ‖ ≤ ‖T pn+1x− T pnx‖ + ‖T pnx− ξ‖ it
follows the equality lim

n→∞
‖T pn+1x− ξ‖ = dist(A1, A2). By Lemma 5 and ‖Tξ−

ξ‖ = dist(A1, A2) we get lim
n→∞

T pn+1x = Tξ. From the inequality ‖T pn+2x −

Tξ‖ ≤ ‖T pn+2x − T pn+1x‖ + ‖T pn+1x − Tξ‖ it follows that lim
n→∞

‖T pn+1x −

Tξ‖ = dist(A2, A3). By Lemma 5 and ‖T 2ξ − Tξ‖ = dist(A2, A3) we get
lim
n→∞

T pn+2x = T 2ξ. By continuing this we can prove lim
n→∞

T pn+kx = T kξ.
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Thus we can write the chain of inequalities

P ≤ sp(ξ, T
p+1ξ, T p+2ξ, . . . , T 2p−1ξ)

= lim
n→∞

sp(T
pnx, T p+1ξ, T p+2ξ, . . . , T 2p−1ξ)

≤ lim
n→∞

sp(T
pn−1x, T pξ, T p+1ξ, . . . , T 2p−2ξ)

= lim
n→∞

sp(T
pn−1x, T pnx, T p+1ξ, . . . , T 2p−2ξ)

≤ lim
n→∞

sp(T
pn−2x, T pn−1x, T pξ, . . . , T 2p−3ξ)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
≤ lim

n→∞
sp(T

pn−px, T pn−p+1x, T pn−p+2x, . . . , T pn−1x) = P.

By the above inequality we get d(ξ, T p+1ξ) = dist(A1, A2) and from (b) we have
d(T pξ, T p+1ξ) = dist(A1, A2). Therefore from Lemma 4 we get T pξ = ξ.

5. Applications and Examples

All the examples in [18] can solved with Theorem 5. We illustrate the applica-
tions of Theorem 5 with an example, which involves integral operators.

Let us consider the Hilbert space L2[−1, 1], endowed with the norm ‖f‖2 =
(

∫ 1
−1 f

2(t)dt
)

1

2

and the functions xi ∈ L2[−1, 1], i = 1, 2, 3, 4, that satisfy

x1(t) = 0 for t ∈ [−1, 0] and x1(t) > 0 for t ∈ (0, 1]; x2(t) = 0 for t ∈ [0, 1] and
x2(t) > 0 for t ∈ [−1, 0); x3(t) = 0 for t ∈ [−1, 0] and x3(t) < 0 for t ∈ (0, 1];
x4(t) = 0 for t ∈ [0, 1] and x4(t) < 0 for t ∈ [−1, 0). It is well known that any
Hilbert space is uniformly convex. We will consider the sets Ai, i = 1, 2, 3, 4,
defined by

Ai = {f ∈ L2[−1, 1] : f(t) ≥ xi(t) for all t ∈ [−1, 1]} for i = 1, 2

and

Ai = {f ∈ L2[−1, 1] : f(t) ≤ xi(t) for all t ∈ [−1, 1]} for i = 3, 4.

It is easy to calculate that

P = dist(A1, A2) + dist(A2, A3) + dist(A3, A4) + dist(A4, A1)
= ‖x1‖2 + ‖x2‖2 + ‖x3‖2 + ‖x4‖2.

Let us denote the maps Ti : L[−1,1] → L[−1,1], i = 1, 2, 3, 4 as follows:

(Tiy)(t) =

{

fi(t) +
∫ 1
0 Fi(t, s, y(s))ds, for t ∈ [0, 1]

0, for t ∈ [−1, 0],
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where fi ∈ L[0,1], i = 1, 2, 3, 4 and Fi : [0, 1] × [0, 1] × L[0,1] → R, i = 1, 2, 3, 4
be continuous functions, such that for vi ∈ Ai there hold the inequalities
(T1v1(s))(−t) ≥ x2(t), (−T2v2(−s))(t) ≤ x3(t), (T3(−v3(s)))(−t) ≤ x4(t) and
(T4(−v4(−s)))(t) ≥ x1(t) for any t ∈ [−1, 1]. Let us define a 4–cyclic map
T : Ai → Ai+1 by

(Tx(s))(t) =















(T1x(s))(−t), x ∈ A1

−(T2x(−s))(t), x ∈ A2

(T3(−x(s)))(−t), x ∈ A3

−T4(−x(−s))(t), x ∈ A4.

(12)

The next theorem is a direct consequence of Theorem 5

Theorem 7. Let T : ∪4
i=1Ai → ∪p

i=1Ai be the map defined in (12). If T
is a 4–summing cyclic orbital Meir–Keeler contraction of type 2 with constant
D = P , then there exists a unique point, say ξ ∈ A1, such that:

(a) for every x ∈ A1 satisfying (1), the sequence {T 4nx} converges to ξ;

(b) ξ is a best proximity point of T in A1 and T jξ is a best proximity point of
T in A1+j ;

(c) ξ is a fixed point for the map T 4 : A1 → A1.

We will present a particular example of Theorem 7.

Example: Let the functions xi ∈ L2[−1, 1], i = 1, 2, 3, 4 be defined by x1 =
{

0, −1 ≤ t ≤ 0
t, 0 ≤ t ≤ 1

; x2(t) = 2x1(−t); x3(t) = −2x1(t) and x4(t) = −x1(−t). It

is easy to calculate that P =
∑4

i=1 dist(Ai, Ai+1) =
(

2
3

)1/2
+ 2

(

5
3

)1/2
+

(

8
3

)1/2
.

Let us define F1(t, s, x(s)) = tsx(s), Fi(t, s, x(s)) = ts
2 x(s) for i = 2, 3, 4,

fi(t) =
5t
3 for i = 1, 2, f3(t) =

2t
3 and f4(t) =

5t
6 . Then the functions fi, Fi for

i = 1, 2, 3, 4 satisfy the conditions of Theorem 7 and T : Ai → Ai+1 is a 4–cyclic
map.

We will prove T satisfies Definition 3 with p = 4 and x = x1(s) for k = 1,
i.e.: if s4,n,1,1(x, y) < P + ε + δ for n ∈ N and y ∈ A1 then there holds the
inequality s4,n,0,1(x, y) < P + ε.

The prove for k = 2, 3 can be done in a similar fashion.

It is easy to observe that (T 4nx)(t) = x(t), (T 4n−1x)(t) = x4(t), (T
4n−2x)(t) =

x3(t) and (T 4n−3x)(t) = x2(t) for every n ∈ N.

Let y ∈ A1. There exists a function α : [−1, 1] → [0,+∞), which satisfies
α(t) ≥ 0 for t ∈ [0, 1] and α(t) = 0 for t ∈ [−1, 0], such that y(t) = t+α(t). Let
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us denote c = c(α) =
∫ 1
0 sα(s)ds. It is easy to see that

Ty(s)(t) = (T1y(s))(t)

= 2
(

5t
6 +

∫ 1
0

ts
2 (s+ α(s))ds

)

= t(2 + c);

T 2y(s)(t) = (T2T1y(s))(t) = (T2(s(2 + c)))(t)

= 5t
3 +

∫ 1
0

ts
2 (s(2 + c))ds = t

(

2 + c
6

)

T 3y(s)(t) = (T3T2T1y(s))(t) =
(

T3

(

s
(

2 + c
6

)))

(t)

= 2t
3 +

∫ 1
0

ts
2 s

(

2 + c
6

)

ds = t
(

1 + c
36

)

.

and after some calculations we get

‖T 4n−1x− y‖2 =

(
∫ 0

−1
t2dt+

∫ 1

0
(t+ α(t))2dt

)

1

2

=

(

2

3
+ 2c+

∫ 1

0
α2(t)dt

)

1

2

;

‖y − Ty‖2 =

(
∫ 1

0
(t+ α(t))2dt+

∫ 0

−1
t2(2 + c)2dt

)

1

2

=

(

5

3
+

10c

3
+

c2

3
+

∫ 1

0
α2(t)dt

)

1

2

;

‖Ty − T 2y‖2 =

(
∫ 0

−1
t2(2 + c)2dt+

∫ 1

0
t2
(

2 +
c

6

)2
dt

)

1

2

=

(

8

3
+

14c

9
+

37c2

108

)1/2

;

‖T 2y − T 4n−1x‖2 =

(
∫ 1

0
t2
(

2 +
c

6

)2
dt+

∫ 0

−1
t2dt

)

1

2

=

(

5

3
+

2c

9
+

c2

108

)

1

2

;

‖T 4nx− Ty‖2 =

(
∫ 1

0
t2dt+

∫ 0

−1
t2(2 + c)2dt

)

1

2

=

(

5

3
+

4c

3
+

c2

3

)

1

2

;

‖T 2y − T 3y‖2 =

(
∫ 1

0
t2
(

2 +
c

6

)2
dt+

∫ 0

−1
t2
(

1 +
c

36

)2
dt

)

1

2

=

(

5

3
+

13c

54
+

37c2

3888

)

1

2

;
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‖T 3y − T 4nx‖2 =

(
∫ 0

−1
t2
(

1 +
c

36

)2
dt+

∫ 1

0
t2dt+

)

1

2

=

(

2

3
+

c

54
+

c2

3888

)

1

2

.

Let us denote

f(α(t)) = s4(T
4n−1x, y, Ty, T 2y) =

(

2
3 + 2c+

∫ 1
0 α2(t)dt

)
1

2

+
(

5
3 +

10c
3 + c2

3 +
∫ 1
0 α2(t)dt

)
1

2

+
(

8
3 + 14c

9 + 37c2

108

)
1

2

+
(

5
3 +

2c
9 + c2

108

)
1

2

;

h(c) = s4(T
4nx, Ty, T 2y, T 3y) =

(

2
3 + c

54 +
c2

3888

)
1

2

+
(

5
3 + 4c

3 + c2

3

)
1

2

+
(

8
3 +

14c
9 + 37c2

108

)
1

2

+
(

5
3 + 13c

54 + 37c2

3888

)
1

2

;

g(c) =
(

2
3 + 2c+ 3c2

)
1

2 +
(

5
3 +

10c
3 + 10c2

3

)
1

2

+
(

8
3 + 14c

9 + 37c2

108

)
1

2

+
(

5
3 + 2c

9 + c2

108

)
1

2

.

From the inequality c2 ≤
(

∫ 1
0 t2dt

)(

∫ 1
0 α2(t)dt

)

= 1
3

(

∫ 1
0 α2(t)dt

)

we get that

there holds the inequality g(c) ≤ f(α(t)). It is easy to see that the functions g
and h are strictly increasing functions for c ∈ [0,+∞). By the inequalities

I1(c) =
(

5
3 +

10c
3 + 10c2

3

)
1

2

+
(

5
3 + 2c

9 + c2

108

)
1

2

=
(

5
3

)
1

2

[

(

1 + 2c+ 2c2
)

1

2 +
(

1 + 2c
15 + c2

180

)
1

2

]

≥
(

5
3

)
1

2

[

(

1 + 2c+ c2
)

1

2 +
(

1 + 2c
15 + c2

152

)
1

2

]

=
(

5
3

)
1

2

(

1 + c+ 1 + c
15

)

=
(

5
3

)1/2 (
2 + 16c

15

)
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and

I2(c) =
(

5
3 +

4c
3 + c2

3

)
1

2

+
(

5
3 + 13c

54 + 37c2

3888

)
1

2

=
(

5
3

)
1

2

[

(

1 + 4c
5 + c2

5

)
1

2

+
(

1 + 13c
90 + 37c2

6480

)
1

2

]

≤
(

5
3

)
1

2

[

(

1 + 2c√
5
+ c2

5

)
1

2

+
(

1 + 2
√
37√

6480
c+ 37c2

6480

)
1

2

]

=
(

5
3

)
1

2

(

1 + c√
5
+ 1 +

√
37√

6480
c
)

=
(

5
3

)1/2
(

2 +
(

1 +
√
37
36

)

c√
5

)

it follows that for every c > 0 there holds the inequality

I1(c) >
(

5
3

)1/2 (
2 + 16c

15

)

>
(

5
3

)1/2
(

2 +
(

1 +
√
37
36

)

c√
5

)

> I2(c)

and consequently h(c) < g(c) holds for every c > 0.
Let ε > 0 be arbitrary chosen. From the equality h(0) = P and the fact

that h is strictly increasing in the interval [0,+∞) it follows that there exists a
unique c0, such that h(c0) = P +ε and h(c) < P +ε for every c ∈ [0, c0). Let us
put δ(ε) = g(c0)−h(c0) > 0. Now if α be such that f(α(t)) < P +ε+ δ(ε) then
from the inequality g(c) ≤ f(α) < P + ε+ δ(ε) = P + ε+ g(c0)− h(c0) = g(c0)
and the fact that g is strictly increasing it follows that c < c0. Therefore
h(c) < h(c0) = P + ε, because h is an increasing function. Consequently T is a
4–summing cyclic orbital Meir-Keeler contraction of type 2. From Theorem 5 it
follows that there exists a unique point ξ ∈ A1, such that: ξ is a best proximity
point of T in A1 and T jξ is a best proximity point of T in A1+j for any j=1,2,3.

All the results in complete metric spaces [7], [8], [18], [10], where the con-
stant D in (1) is zero are covered by Theorem 4.

For other examples involving Integral operators we refer to [10] and [19].
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